Terroir 2010 banner
IVES 9 IVES Conference Series 9 Zonazione dell’area viticola doc durello

Zonazione dell’area viticola doc durello

Abstract

[English version below]

Il lavoro di zonazione riveste un ruolo importante per capire le potenzialità e la vocazionalità di una specifica area viticola. La viticoltura dovrebbe essere vista in funzione dell’obiettivo enologico che si vuole realizzare e quindi particolare importanza riveste il risultato delle vinificazioni delle uve provenienti dai vigneti delle diverse aree della zona di produzione oggetto d’indagine. La zonazione dell’area a DOC Monti Lessini Durello ha preso in esame la varietà “Durella”, vitigno autoctono del territorio, che rappresenta la maggior parte della produzione vitivinicola della zona. Durante il quadriennio 2002-2005 si sono effettuati i rilievi vegeto-produttivi e le vinificazioni delle uve di questa varietà provenienti dalle 15 aree individuate attraverso un’indagine podologica del territorio di coltivazione Monti Lessini Durello, che si estende su un’ampia superficie nelle province di Verona e Vicenza. Un aspetto innovativo di questo lavoro e di aver introdotto, sebbene solo per un’annata, la valutazione del potenziale enologico del vino anche attraverso il processo di spumantizzazione con il metodo classico. In questo modo si è potuto poi verificare, attraverso l’analisi sensoriale, non solo le peculiarità delle diverse zone ma anche la loro attitudine al processo di spumantizzazione, confrontando la valutazione dei vini fermi con quelli spumante di ogni singola area vocazionale. Tale analisi ha evidenziato al di là delle diverse caratteristiche di ogni singola area l’attitudine di questo vitigno a dare origine a vini spumanti di elevata qualità.

The task of zoning plays a significant role in understanding the potential and suitability of a specific vine-growing area. Viticulture should always be considered in the light of the oenological objectives that one has in mind and the results of the vinification of grapes from different areas within the production zone under consideration are therefore of particular importance. The zoning of the Monti Lessini Durello D.O.C. area focused on the indigenous “Durella” variety, which is responsible for the majority of the zone’s viti-vinicultural production. During the four-year period of 2002-2005 we carried out surveys regarding vegetative and fruit yields, as well as vinifying grapes of this variety from the 15 areas we identified as a result of a pedological study of the region for the cultivation of Monti Lessini Durello, which covers quite a large area in the Provinces of Verona and Vicenza. An innovative aspect of this work was that – if only for one vintage – we also introduced an evaluation of the various wines’ oenological potential by subjecting them to prise de mousse. In this way, we were able to test, by means of sensory analysis, not only the peculiarities of the different zones but also their appropriateness for producing sparkling wines, comparing our evaluation of the still wine and the sparkling one from each specific production area. This analysis highlighted – apart from the different characteristics of each individual area – this variety’s aptitude for producing sparkling wines of very high quality.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

E. Tosi (1) , G. Benciolini (2), A. Lorenzoni (3), G. Ponchia (3), D. Tomasi (4)

(1) Centro per la Sperimentazione in Vitivinicoltura, Provincia di Verona (Italy)
(2) Pedologo Libero Professionista, Verona (Italy )
(3) Consorzio di Tutela Vino Lessini Durello DOC, Verona (Italy)
(4) Centro di Ricerca per la Viticoltura, Conegliano TV (Italy)

Contact the author

Keywords

Zonazione, Durella, Lessini, Verona

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Despite its relevance for wine quality and stability, red wine colloids have not still been
sufficiently investigated, an occurrence due to the lack of suitable analytical techniques to study them as they are present in wine.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

Effect of scion-rootstock combinations on the performance of a near-infrared (NIR) spectroscopy method for determining vine water status

In the context of sustainable viticulture, modern and efficient techniques to determine water status are required to optimize irrigation practices. Proximal techniques such as thermography and spectroscopy have shown promising results. When these techniques are incorporated into mobile systems is possible to evaluate the water status on-the-go, offering the possibility to generate variability maps. However, in most cases, complex protocols of data acquisition and analysis are required. Also, the inherent physiological behaviour of the plants under certain water stress conditions needs to be considered. Therefore, the aim of this study was to evaluate the effect of scion-rootstock combinations on the performance of a predefined plant-based method based on proximal near-infrared (NIR) spectroscopy.

Effects of oak barrel aging monitored by 1H-NMR metabolomics

The study of wine evolution during barrel aging is an important aspect of wine quality. Our previous works have shown that wine metabolome monitoring by

1H-NMR approaches allows determining the impact of different winemaking processes including traitements using enzymes or finning agents [1].