Effetti del cambiamento climatico europeo sulle epoche di vendemmia in Abruzzo

Abstract

[English version below]

I dati termo-pluviometrici del periodo 1971-2009 registrati da alcune stazioni della regione Abruzzo sono stati analizzati adottando alcuni semplici indici climatici e bioclimatici. E’ stato valutato il verificarsi di cambiamenti climatici così come le loro ripercussioni sulle date di inizio vendemmia. La data di vendemmia è risultata significativamente influenzata dalle disponibilità termiche e in particolare dalle Ore Normali di Caldo (NHH) cumulate nel periodo marzo-giugno. L’analisi statistica dei trend temporali dell’ accumulo di NHH in marzo-giugno ha individuato una discontinuità climatica che ricade nel 1984 per la collina litoranea centrale, nel 1997 per la collina litoranea meridionale e nel 1998 per la collina interna del pescarese. Questi punti di discontinuità sono risultati in buon accordo con i punti di discontinuità delle date di inizio raccolta e possono pertanto rappresentare lo spartiacque tra la precedente e l’attuale fase climatica. Quest’ultima si caratterizza per un anticipo della data di raccolta rispettivamente di 10 giorni per la collina litoranea meridionale , 15 per la collina litoranea centrale e 14 per la collina interna.

Thermo-pluviometric data registered in the period 1971-2009 by three hillside stations of the Abruzzi located in maritime areas (central and southern part of the region) and in the internal zone were analyzed adopting some simple climatic and bioclimatic indices. Occurrence of climate change was evaluated as well as its influence on harvest dates. Harvest dates were significantly influenced by thermal availability, mainly when it was measured by Normal Heat Hours referred to the period March-June (NHH march-june). The statistical analysis of the temporal trends of NHH march-june has identified change-points occurred in a lapse of time from 1984 to 1998. The first abrupt change happened in central maritime area (1984), followed in 1997 and 1998 seasons by change-points respectively registered in southern maritime area in the internal zone. These NHH march-june break-points were in a good relationship with harvest date break-points and seem to well represent the watershed between the previous and the current climatic phase. This latter is characterized by an advance in harvest date around 10 days in southern maritime area and averaging 14-15 days in central maritime area and internal zone.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

B. Di Lena (1)(2) , L. Mariani (3), F. Antenucci (2), O. Silvestroni (1)

(1) Dip. Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche, Via Brecce bianche, 60131 Ancona
(2) Regione Abruzzo – Arssa – Centro Agrometeorologico Regionale, C.da Colle Comune, 66020 Scerni (Chieti)
(3) Università di Milano- Dipartimento di Produzione Vegetale, Via Celoria, Milano

Keywords

Vitis vinifera, fenologia, ore normali di caldo
Vitis vinifera, climate change, harvest date

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Results in the characterization of a new wine terroir unit in south Brazil are reported. Presently, several areas in Brazil are being studied, in an effort to define new wine terroirs and improve the quality of Brazilian wines.

Considerations about the concept of “terroir”: definition and research direction

On exposera la distinction et la relation entre: “Etude des milieux”, “Zonage Petit ou Zonage Technique ou Sub Zonage”, “Grand Zonage”, “Délimitation des zones productives” ex.

Pinot noir: an endemic or a flexible variety?

Pinot noir has its historical roots in Burgundy and is generally considered as an endemic vine variety which means that its adaptation is very specific to this environment

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.