Terroir 2010 banner
IVES 9 IVES Conference Series 9 Typicality related to terroir: from conceptual to perceptual representation: study of the links with enological practices

Typicality related to terroir: from conceptual to perceptual representation: study of the links with enological practices

Abstract

The conceptual image of a wine related to the terroir has consequences in technical terms. Among factors affecting the typicality, producers put forward the environmental factors of the terroir system, then the variety and finally the viticultural and oenological factors. We postulate that for the production of red wine, the “phenolic maturity” must be considered as an essential criterion. The “phenolic maturity” was translated into the date of grape harvest and the duration of vatting. Because of the nature of the corresponding biochemical compounds, these choices could have important consequences on the sensory profile of wines. The objective of this study is to understand the relationship between the conceptual image of a wine and the perceptual dimension of the wine, by connecting the typicality with some technical acts. The distinctive French wine style “Anjou Village Brissac” was investigated through four methods. A survey was performed to measure the conceptual dimension, and three sensorial methods were used for the perceptual dimension (Quantitative descriptive analysis (QDA) by a sensory expert panel, Just About Right analysis (JAR) by wine experts, and assessment of the typicality by wine experts). Wine experts were producers, winemakers, and oenologists from the area. The survey allowed highlighting soil as the first factor that affects the typicality. On the other hand, the QDA and JAR profiles highlighted the prevalence of the technical factors, in particular oenological, over the environmental factors. The JAR profile allowed to classify attributes in the typicality scores. Moreover, the study made it possible to show the shift between the conceptual typicality and the perceptual typicality, from the point of view of the technical acts, but also from the sensory point of view.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Cadot Yves (1), Caillé Soline (2), Thiollet-Scholtus Marie (1), Samson Alain (3), Barbeau Gérard (1), Cheynier Véronique (2)

(1) INRA, UE 1117, UMT Vinitera, F-49070 Beaucouzé, France
(2) INRA, UMR1083 Sciences pour l’OEnologie, F-34060 Montpellier, France
(3) INRA, UE999 Pech-Rouge, F-11430 Gruissan, France

Contact the author

Keywords

 Terroir, Cabernet, Typicality, Sensory analysis, Practices, Soil

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Acidity is often touted as a predictor of wine ageability, though surprisingly few studies have systematically investigated the chemical basis for this claim.

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Crimson Seedless’ (Vitis vinifera L.) is a late-ripening, red seedless table grape cultivar with inadequate anthocyanin accumulation and less than ideal berry size issues

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction

Diffuse light due to wildfire smoke enhances gas exchange of shaded leaves

The risk of wildfires is increasing as the frequency and severity of drought and heat waves continue to rise. Wildfires are associated with the combustion of plant materials and emit smoke. In the atmosphere, smoke may spread readily across large areas. Smoke is composed of solid and liquid phase particulates and gases and has been identified as a causal agent of “smoke taint” in wine. On a smoky day, the intensity of direct light decreases because these particulates scatter sunlight. Even though this effect is frequently assumed to decrease plant photosynthesis, this assumption ignores the potential changes in diffuse light and may be based on scant evidence.