Terroir 2010 banner
IVES 9 IVES Conference Series 9 Assessment of environmental sustainability of wine growing activity in France

Assessment of environmental sustainability of wine growing activity in France

Abstract

To meet the demand of assessment tool of vine growers and their advisers we adapted to the vine production the INDIGO® method to developed initially for arable farming. This article aims to assess the feasibility and the robustness of the INDIGO® Indicators multi-criteria method of environmental assessment.
INDIGO® indicators of sustainability were built based on different aggregation methods of winegrowers practices and field characteristics. Indicators were tested in Alsace, Champagne, Burgundy, Jura vineyards for northern climate and four vintages (2000, 2001, 2002 and 2003) and Loire Valley vineyards for oceanic climate for 2008 vintage. Four viti-ecological indicators -I-pesticide, I-energy, I-nitrogen and I-organic-matter – were adapted from arable farming. And two viti-ecological indicators – I-soil-cover and I-frost– were created for vineyards. The six indicators were tested in Northern French vineyards and three of them -I-pesticide, I-energy and I-soil-cover- were adapted to oceanic conditions of vineyard production and calculated with 2008 data. INDIGO® viti-ecological indicators were successfully tested in several French vineyards illustrated the large variations between vineyards in rain intensity, fungi attack and winegrowers practices. The results leads us to that these INDIGO® viti-ecological indicators are robust and can be used in all vineyards.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M. Thiollet-Scholtus , G. Barbeau (1), A. Tonus (1), C. Bockstaller (2)

(1) INRA, UE 1117, UMT Vinitera, F-49070 Beaucouzé, France
(2) INRA, UMR 1121 Nancy-Colmar Agronomie-Environnement, F-68021 Colmar, France

Contact the author

Keywords

Practices, vineyard, environment, assessment, decision aid tool

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

The sensory features of the landscapes

When someone watches a hilly landscape, the image beauty creates emotions and frames of mind not easily forgettable, but sometimes man’s intervention by means of soil movement and reduction of the natural biodiversity can significantly modify the landscape and consequently the above-mentioned emotions. One speculates if sensory appreciation of a wine may be strongly affected by psychological factor: landscape beauty.

Chitosan elicits mono-glucosylated stilbene production and release in fed-batch fermentation of grape cells 

In the present study, the optimal conditions of grape (Vitis vinifera cv ‘Barbera’) cell cultures in batch and fed-batch bioreactor processes were studied to specifically improve the production of mono-glucosylated stilbenes.

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].