Terroir 2008 banner
IVES 9 IVES Conference Series 9 Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

Abstract

The region of viticultural production near Pinto Bandeira, Brazil, is being studied to define typical characteristics of wines locally produced. Vineyards above altitudes of 500m qualify as “Mountain Wines”, a geographical denomination. Rocks, soils, and wines are analyzed. Several techniques are used: remote sensing, radiometry, and chemical analysis. Results indicate that elements (Fe, Cu, Mg, Al, and others) from rocks and soils are not detected in wines. However, minerals present in rocks and soils (montmorillonite, mordenite, illite) can be traced in wines, indicating a transmission of soils descriptors to wines. Geological maps of the region were generated from images of SPOT, Landsat and ASTER satellites.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

André Luis Silva COUTINHO (1), Jorge Ricardo DUCATI (1), Rosemary HOFF (2,1)

(1) Pesquisas em Sensoriamento Remoto e Meteorologia
Universidade Federal do Rio Grande do Sul Av. Bento Gonçalves 9500 – CEP 91501-970
Porto Alegre, Brasil
(2) Centro Nacional de Pesquisas em Uva e Vinho
Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA Bento Gonçalves, Brasil

Contact the author

Keywords

geographical indication, remote sensing, radiometry, soils

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

Assessing the relationship between cordon strangulation, dieback, and fungal trunk disease symptom expression

Grapevine trunk diseases including Eutypa dieback are a major factor in the decline of vineyards and may lead to loss of productivity, reduced income, and premature reworking or replanting. Several studies have yielded results indicating that vines may be more likely to express symptoms of vascular disease if their health is already compromised by stress. In Australia and many other wine-growing regions it is a common practice for canes to be wrapped tightly around the cordon wire during the establishment of permanent cordon arms. It is likely that this practice may have a negative effect on health and longevity, as older cordons that have been trained in this manner often display signs of decay and dieback, with the wire often visibly embedded within the wood of the cordon. It is possible that adopting a training method which avoids constriction of the vasculature of the cordon may help to limit the onset of vascular disease symptom expression. A survey was conducted during the spring of two consecutive growing seasons on vineyards in South Australia displaying symptoms of Eutypa lata infection when symptomless shoots were 50–100 cm long. Vines were assessed as follows: (i) the proportion of cordon exhibiting dieback was rated using a 0–100% scale; (ii) the proportion of canopy exhibiting foliar symptoms of Eutypa dieback was rated using a 0–100% scale; (iii) the severity of strangulation was rated using a 0–4 point scale. Images were also taken of each vine for the purpose of measuring plant area index (PAI) using the VitiCanopy App. The goal of the survey was to determine if and to what extent any correlation exists between severity of strangulation and cordon dieback, in addition to Eutypa dieback foliar symptom expression.

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

rape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied.