Terroir 2004 banner
IVES 9 IVES Conference Series 9 Methodological approach to zoning

Methodological approach to zoning

Abstract

An appellation or geographic indication should be based on the terroir concept in order to ensure its integrity. The delimitation of viticultural terroirs must include two consecutive or parallel steps, namely (a) the characterisation of the environment and identification of homogenous environmental units (basic terroir units, natural terroir units) taking all natural factors into account, as well as (b) the characterisation of the viticultural and oenological potential of these units over time.
Une appellation ou indication géographique doit être basée sur le concept du terroir pour assurer son intégrité. La délimitation des terroirs viticoles doit inclure deux étapes consécutives ou parallèles, en l’occurrence (a) la caractérisation de l’environnement et l’identification d’unités environnementales homogènes (unités terroir de base, unités terroir naturels) prenant en compte tout facteurs naturels, ainsi que (b) la caractérisation du potentiel vitivinicole de ces unités à travers le temps.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V.A. Carey (1), V. Bonnardot (2)

(1) Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, 7602
Matieland, South Africa
(2) ARC-ISCW

Contact the author

Keywords

Zoning, terroir, climate, regional atmospheric modelling

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Are all red wines equals regarding their vulnerability to Brettanomyces bruxellensis ?

Odours deemed harmful by the consumer and described as “stable”, “horse sweat” or “burnt plastic” can be found in wines. The responsible molecules are volatile phenols, produced by a spoilage yeast: brettanomyces bruxellensis. This species is particularly well adapted to the wine environment and can resists many stresses such as a high alcohol level, a low ph or high levels of SO2, more or less efficiently depending on the strain considered.

Innovative approaches in the evaluation of the spatial and temporal biodiversity of grape varieties from the Portuguese Bairrada appellation using LIMM-PCA: a study across five harvests

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard and wine ecosystems is required, as well as the varieties plasticity. Particular attention should be devoted to the spatial and temporal interactions between authorized or recommended varieties for a specific demarcated region and clime and vineyard conditions (such as soil type, orientation of the lines, age of the vine, density of planting, harvesting practices, among others).

Responses of grape yield and quality, soil physicochemical and microbial properties to different planting years

As an economically important fruit crop, continuous cropping of grapes can potentially impact soil health resulting in decreased yields.

Withering of the ‘Moscato giallo’ grapes under covered space

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids.

Assessing and mapping vineyard water status variability using a miniaturized nir spectrophotometer from a moving vehicle

In the actual scenario of climate change, optimization of water usage is becoming critical in sustainable viticulture. Most of the current approaches to assess grapevine water status and drive irrigation scheduling are either destructive, time and labour consuming and monitor a small, limited number of plants. This work presents a novel methodology using a contactless, miniaturized, low-cost NIR spectrometer to monitor the vineyard water status variability from a moving vehicle, to provide reliable information towards precision irrigation.