Terroir 2004 banner
IVES 9 IVES Conference Series 9 Methodological approach to zoning

Methodological approach to zoning

Abstract

An appellation or geographic indication should be based on the terroir concept in order to ensure its integrity. The delimitation of viticultural terroirs must include two consecutive or parallel steps, namely (a) the characterisation of the environment and identification of homogenous environmental units (basic terroir units, natural terroir units) taking all natural factors into account, as well as (b) the characterisation of the viticultural and oenological potential of these units over time.
Une appellation ou indication géographique doit être basée sur le concept du terroir pour assurer son intégrité. La délimitation des terroirs viticoles doit inclure deux étapes consécutives ou parallèles, en l’occurrence (a) la caractérisation de l’environnement et l’identification d’unités environnementales homogènes (unités terroir de base, unités terroir naturels) prenant en compte tout facteurs naturels, ainsi que (b) la caractérisation du potentiel vitivinicole de ces unités à travers le temps.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V.A. Carey (1), V. Bonnardot (2)

(1) Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, 7602
Matieland, South Africa
(2) ARC-ISCW

Contact the author

Keywords

Zoning, terroir, climate, regional atmospheric modelling

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Transcriptomic analyses of wild Vitis species under drought conditions for next-generation breeding of grapevine rootstocks

Drought is one of the main challenges for viticulture in the context of climate change. Selecting drought-tolerant plant material can be an effective strategy for a sustainable viticulture.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation.

Cumulative effect (6 years) of deficit irrigation in two important cultivars of Douro region, Portugal

Numerous studies have demonstrated the importance of irrigation in improving the grape yield and quality in areas with arid and semiarid climates, particularly in the context of ongoing climate changes. However, the introduction of irrigation in vineyards of the Mediterranean basin is a matter of debate, in particular in those of the Douro Demarcated Region (DDR), due to the limited number of available studies in this region. The present study aimed to evaluate how different irrigation deficits for 6 years would influence production and must quality in Touriga Francesa (TF) and Touriga Nacional (TN) varieties.

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

Tempranillo in semi-arid tropical climate (Pernambuco-Brazil). Adaptation of some clones and their affinity to different rootstocks

The variety Aragonez (sin. Tempranillo), recently introduced in the San Francisco Valley (9º02′ S; 40º11′ W) has revealed an excellent adaptation, with high potential of quality and yield, even without clonal material.