Terroir 2004 banner
IVES 9 IVES Conference Series 9 “Terroir” and grape and wine quality of native grape variety Istrian Malvasia

“Terroir” and grape and wine quality of native grape variety Istrian Malvasia

Abstract

Viticulture and wine production have a historical tradition in Istria. First written document of vine cultivation in this area date since antiquity. The most wide spread vine variety in Istria is Istrian Malvasia (white variety), and it capture about 60% of total vineyard surface in Istria today. The Istrian Malvasia is a native grape variety in Istria, and it is one of the best varieties in a huge family of Malvasian varieties from Mediterranean basin. The Istrian Malvasia gives quality grapes for high quality wine production. Except the variety, on high quality of wine, a location of vineyard – «terroir» also has a very strong impact.
The objective of this research was to establish how different locations of vineyards influenced on grape and wine quality of Istrian Malvasia. Four specific locations have been chosen for this research. Those are: Pula – southern part of Istrian peninsula, with shallow red soils and low amount of rain in vegetation, Visnjan – western part of peninsula, with characteristics deep red soils and good physical and chemical properties, Motovun – central part of peninsula, with gray («flysch») soils, rich with clay, and bad physical and chemical properties and cold winter period and Buje – northwestern part of peninsula, with brown soils, good physical and chemical properties and good rain distribution through year. On all locations a growing form was Guyot – single or double branched.
Grapes and wine were analyzed from each location for harvest 2002. The content of acetate and ethyl esters, fatty acids and free monoterpenes was analyzed from wine extracts obtained by the solid phase extraction (SPE) method using C18 as a sorbent. SPE has already been applied for the analysis of aroma compounds from wine and grapes (Wada et al., 1997., Carballeira et al., 2001., López et al., 2002.). The content of higher alcohols was analyzed from wine distillates. All aromatic compounds were analyzed by gas chromatography. Wine from Buje location contains higher level of volatile esters, particularly iso-amyl acetate (average 2,04 mg/L), significantly higher then on the other locations. The wine from Buje location also contains significantly higher amount of free monoterpenes, especially linalool (average 27 µg/L) and geraniool (average 49 µg/L). The wine from Motovun location contains higher amount of higher alcohols, especially 2-phenyl ethanol (average 26,42 mg/L), significantly higher then on the other locations.
Summarized, all results show how not only the variety but also location of vineyard – «terroir» has a strong impact on the quality of grape and wine.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Persuric, B. Sladonja, S. Radeka, D. Gluhic, I. Lukic

Institute for Agriculture and Tourism, Karla Huguesa 8, 52 440 Porec, Croatia

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

From a local to an international scale: sensory benchmarking of PDO wines. Quincy and Reuilly PDO wines (Sauvignon blanc) as a case study (France)

In a collective marketing strategy, the Protected Designation of Origin (PDO) can be used as a quality indicator. To highlight terroir specificities, it is useful to know how the wines are positioned on the local, national or international market from a sensory point of view. This is especially true for a comparison of varietal wines (e.g. Sauvignon blanc). We focus on the case of two closed Loire Valley PDO (France): Quincy and Reuilly. Three distinct tastings were organized. Firstly, at the local level comparing the 2 PDO (11 and 9 wines, 17 professional assessors); secondly at a regional level adding 3 closed PDO: Menetou-Salon, Sancerre and Pouilly-Fumé (3 wines per PDO, 16 assessors) and thirdly at an international level comparing these 5 PDO with Sauvignon Blanc wines coming from South Africa, New Zealand and Chile (1 to 3 wines per PDO, 19 assessors). All the wines were from the 2019 vintage and were considered to have a traditional elaboration process without contact with oak. A sensory descriptive analysis was performed using an aroma wheel allowing to combine a Check-All-That-Apply methodology, often used in sensory benchmarking, with a hierarchical structuration of the attributes. The aim is to facilitate data acquisition in a professional context without common training, to consider the hierarchical relationships among the attributes during the data analysis and to be able to characterize wines with a large range of sensorial variability. We use univariate, multivariate and clustering analyses. Similarities and differences between Quincy and Reuilly PDO wines and other Sauvignon blanc wines were identified. Specific attributes can distinguish the two PDO and different proximities exist with other local PDO, while clear differences were observed compared to international wines. Our study contributes to propose and discuss a method to do a wine sensory benchmarking highlighting sensory specificities linked to origin.

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.