Terroir 2004 banner
IVES 9 IVES Conference Series 9 “Terroir” and grape and wine quality of native grape variety Istrian Malvasia

“Terroir” and grape and wine quality of native grape variety Istrian Malvasia

Abstract

Viticulture and wine production have a historical tradition in Istria. First written document of vine cultivation in this area date since antiquity. The most wide spread vine variety in Istria is Istrian Malvasia (white variety), and it capture about 60% of total vineyard surface in Istria today. The Istrian Malvasia is a native grape variety in Istria, and it is one of the best varieties in a huge family of Malvasian varieties from Mediterranean basin. The Istrian Malvasia gives quality grapes for high quality wine production. Except the variety, on high quality of wine, a location of vineyard – «terroir» also has a very strong impact.
The objective of this research was to establish how different locations of vineyards influenced on grape and wine quality of Istrian Malvasia. Four specific locations have been chosen for this research. Those are: Pula – southern part of Istrian peninsula, with shallow red soils and low amount of rain in vegetation, Visnjan – western part of peninsula, with characteristics deep red soils and good physical and chemical properties, Motovun – central part of peninsula, with gray («flysch») soils, rich with clay, and bad physical and chemical properties and cold winter period and Buje – northwestern part of peninsula, with brown soils, good physical and chemical properties and good rain distribution through year. On all locations a growing form was Guyot – single or double branched.
Grapes and wine were analyzed from each location for harvest 2002. The content of acetate and ethyl esters, fatty acids and free monoterpenes was analyzed from wine extracts obtained by the solid phase extraction (SPE) method using C18 as a sorbent. SPE has already been applied for the analysis of aroma compounds from wine and grapes (Wada et al., 1997., Carballeira et al., 2001., López et al., 2002.). The content of higher alcohols was analyzed from wine distillates. All aromatic compounds were analyzed by gas chromatography. Wine from Buje location contains higher level of volatile esters, particularly iso-amyl acetate (average 2,04 mg/L), significantly higher then on the other locations. The wine from Buje location also contains significantly higher amount of free monoterpenes, especially linalool (average 27 µg/L) and geraniool (average 49 µg/L). The wine from Motovun location contains higher amount of higher alcohols, especially 2-phenyl ethanol (average 26,42 mg/L), significantly higher then on the other locations.
Summarized, all results show how not only the variety but also location of vineyard – «terroir» has a strong impact on the quality of grape and wine.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Persuric, B. Sladonja, S. Radeka, D. Gluhic, I. Lukic

Institute for Agriculture and Tourism, Karla Huguesa 8, 52 440 Porec, Croatia

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

HRATA : A new sensory methodology using advantage of wine aromatic wheels

Wine is an intrinsically complex aromatic product. To formalize this aromatic diversity and the hierarchical structure of the aromas, it is common to present them in the form of a wheel of aromas. These are used for learning and communication purposes but never for the acquisition of sensory characteristics.

The capacity of spectrofluorometric fingerprints to discern changes of wine composition: applications in classifying wine additives and tracking red wine maturation and ageing

Fluorescence spectroscopy combined with chemometrics has shown advantages in wine analysis due to being rapid, sensitive, and selective to fluorescent molecules. Especially due to the abundant phenolic compounds [1], the molecular fingerprints afforded by fluorescence spectroscopy can potentially be used to discern and track the change of wine composition, with two innovative investigations having been implemented.

Comparison of integrated, organic and biodynamic viticultural practices

In this video recording of the IVES science meeting 2021, Johanna Döring (Hochschule Geisenheim University Department of General and Organic Viticulture, Geisenheim, Germany) speaks about the comparison of integrated, organic and biodynamic viticultural practices. This presentation is based on an original article accessible for free on OENO One.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.