Terroir 2004 banner
IVES 9 IVES Conference Series 9 “Terroir” and grape and wine quality of native grape variety Istrian Malvasia

“Terroir” and grape and wine quality of native grape variety Istrian Malvasia

Abstract

Viticulture and wine production have a historical tradition in Istria. First written document of vine cultivation in this area date since antiquity. The most wide spread vine variety in Istria is Istrian Malvasia (white variety), and it capture about 60% of total vineyard surface in Istria today. The Istrian Malvasia is a native grape variety in Istria, and it is one of the best varieties in a huge family of Malvasian varieties from Mediterranean basin. The Istrian Malvasia gives quality grapes for high quality wine production. Except the variety, on high quality of wine, a location of vineyard – «terroir» also has a very strong impact.
The objective of this research was to establish how different locations of vineyards influenced on grape and wine quality of Istrian Malvasia. Four specific locations have been chosen for this research. Those are: Pula – southern part of Istrian peninsula, with shallow red soils and low amount of rain in vegetation, Visnjan – western part of peninsula, with characteristics deep red soils and good physical and chemical properties, Motovun – central part of peninsula, with gray («flysch») soils, rich with clay, and bad physical and chemical properties and cold winter period and Buje – northwestern part of peninsula, with brown soils, good physical and chemical properties and good rain distribution through year. On all locations a growing form was Guyot – single or double branched.
Grapes and wine were analyzed from each location for harvest 2002. The content of acetate and ethyl esters, fatty acids and free monoterpenes was analyzed from wine extracts obtained by the solid phase extraction (SPE) method using C18 as a sorbent. SPE has already been applied for the analysis of aroma compounds from wine and grapes (Wada et al., 1997., Carballeira et al., 2001., López et al., 2002.). The content of higher alcohols was analyzed from wine distillates. All aromatic compounds were analyzed by gas chromatography. Wine from Buje location contains higher level of volatile esters, particularly iso-amyl acetate (average 2,04 mg/L), significantly higher then on the other locations. The wine from Buje location also contains significantly higher amount of free monoterpenes, especially linalool (average 27 µg/L) and geraniool (average 49 µg/L). The wine from Motovun location contains higher amount of higher alcohols, especially 2-phenyl ethanol (average 26,42 mg/L), significantly higher then on the other locations.
Summarized, all results show how not only the variety but also location of vineyard – «terroir» has a strong impact on the quality of grape and wine.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Persuric, B. Sladonja, S. Radeka, D. Gluhic, I. Lukic

Institute for Agriculture and Tourism, Karla Huguesa 8, 52 440 Porec, Croatia

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Study of Spanish wine sensory analysis data over a 3-year period

This study presents an investigation based on sensory analysis data of Spanish wines with geographical indications collected over a three-year period. Sensory analysis plays a crucial role in assessing the quality, characteristics, and perception of wines. The trained tasting panel at Dolmar Laboratory, accredited for objective sensory evaluation of wines since 2016, has been tasting over 5000 wines. However, it is since 2021, when a computer application for tastings was developed, that the digitalization of data allows for detailed statistical analysis of the results.

Zonage vitivinicole: recherches et considérations initiales sur une proposition de “nouvelle” méthodologie d'”évaluation de la qualité” du produit tel qu’élément base pour le zonage aussi

Si on part de l’introduction que l’activité vitivinicole maintenant plus que jamais doit être une activité d’entreprenariat introduite de mieux en mieux sur le territoire et donc effectuée pour rendre maximal le Profit

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.