Terroir 2004 banner
IVES 9 IVES Conference Series 9 “Terroir” and grape and wine quality of native grape variety Istrian Malvasia

“Terroir” and grape and wine quality of native grape variety Istrian Malvasia

Abstract

Viticulture and wine production have a historical tradition in Istria. First written document of vine cultivation in this area date since antiquity. The most wide spread vine variety in Istria is Istrian Malvasia (white variety), and it capture about 60% of total vineyard surface in Istria today. The Istrian Malvasia is a native grape variety in Istria, and it is one of the best varieties in a huge family of Malvasian varieties from Mediterranean basin. The Istrian Malvasia gives quality grapes for high quality wine production. Except the variety, on high quality of wine, a location of vineyard – «terroir» also has a very strong impact.
The objective of this research was to establish how different locations of vineyards influenced on grape and wine quality of Istrian Malvasia. Four specific locations have been chosen for this research. Those are: Pula – southern part of Istrian peninsula, with shallow red soils and low amount of rain in vegetation, Visnjan – western part of peninsula, with characteristics deep red soils and good physical and chemical properties, Motovun – central part of peninsula, with gray («flysch») soils, rich with clay, and bad physical and chemical properties and cold winter period and Buje – northwestern part of peninsula, with brown soils, good physical and chemical properties and good rain distribution through year. On all locations a growing form was Guyot – single or double branched.
Grapes and wine were analyzed from each location for harvest 2002. The content of acetate and ethyl esters, fatty acids and free monoterpenes was analyzed from wine extracts obtained by the solid phase extraction (SPE) method using C18 as a sorbent. SPE has already been applied for the analysis of aroma compounds from wine and grapes (Wada et al., 1997., Carballeira et al., 2001., López et al., 2002.). The content of higher alcohols was analyzed from wine distillates. All aromatic compounds were analyzed by gas chromatography. Wine from Buje location contains higher level of volatile esters, particularly iso-amyl acetate (average 2,04 mg/L), significantly higher then on the other locations. The wine from Buje location also contains significantly higher amount of free monoterpenes, especially linalool (average 27 µg/L) and geraniool (average 49 µg/L). The wine from Motovun location contains higher amount of higher alcohols, especially 2-phenyl ethanol (average 26,42 mg/L), significantly higher then on the other locations.
Summarized, all results show how not only the variety but also location of vineyard – «terroir» has a strong impact on the quality of grape and wine.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Persuric, B. Sladonja, S. Radeka, D. Gluhic, I. Lukic

Institute for Agriculture and Tourism, Karla Huguesa 8, 52 440 Porec, Croatia

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.

Caractérisation des terroirs viticoles champenois

The Champagne vineyard extends over 35,300 ha under the Appellation d’Origine Contrôlée, of which 30,000 are in production. It mainly covers 3 departments: in order of importance, Marne (68% of the appellation area), Aube (22%) and Aisne (10%), and more anecdotally Haute Marne and Seine and Mame. It is a young vineyard (for more than half of the surface, the winegrowers have the experience of only one generation of vines), and fragmented (more than half of the exploitations extend over less than 1 ha; the average size of a cadastral parcel is 12 ares).

Market analysis of Chilean Pinot noir, Carménère, and Cabernet-Sauvignon wines: A comparative study of chemical parameters across low, medium, and high price segments

Wine quality is a complex concept determined by multiple factors, including vineyard management, winemaking operations, and the sensory perception of key attributes.

Yeast diversity in Vitis labrusca l. Ecosystems

Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, little is known about the diversity of yeast communities present in non-vinifera Vitis ecosystems (i.e., grapes and spontaneously fermenting grape musts). Potentially scientific and/or enological valuable yeast strains from these non-vinifera Vitis ecosystems might never be isolated from V. vinifera L. Using a standard culture-dependent strategy, we studied the population of yeast species during initial stages of spontaneous fermentation of V. labrusca L. (Isabella) grape musts. Rare non-Saccharomyces yeast species were recognized in Isabella, including Candida azymoides, Pichia cecembensis, Candida californica, Candida bentonensis, Issatchenkia hanoiensis and Candida apicola.