Terroir 2004 banner
IVES 9 IVES Conference Series 9 Flanan-3-ol compositional changes in red grape berries (Vitis vinifera L. cv Cabernet franc) from two terroirs of the Loire Valley (France)

Flanan-3-ol compositional changes in red grape berries (Vitis vinifera L. cv Cabernet franc) from two terroirs of the Loire Valley (France)

Abstract

[English version below]

La quantité et la qualité des flavonoïdes sont des éléments importants de la qualité de la baie. En particulier, les tannins contribuent de manière essentielle aux propriétés spécifiques des vins rouges telles que la couleur, l’astringence et l’amertume. Cependant, leur synthèse et leurs propriétés sont encore mal connues. Ainsi, la compréhension des relations qui existent entre, d’une part, le milieu et d’autre part la mise en place de ce pool tannique jusqu’à la vendange est insuffisante. La composition en tannins des pellicules est suivie depuis le milieu de la phase de croissance herbacée (30 jours après le début floraison) et jusqu’à une maturité normale, sur deux parcelles. L’étude considère un stade donné de développement et non pas la valeur moyenne des paramètres à la parcelle. Ainsi, l’apport d’une relation plus fonctionnelle entre composition et stade physiologique du raisin constitue un levier puissant d’interprétation. La composition en flavan-3-ols et en proanthocyanidines des pellicules est déterminée par HPLC-phase inverse et par histochimie. Le couplage de ces deux techniques permet d’associer des informations quantitatives et spatiales. Cette approche originale permet de mettre en évidence l’importance de la période pré-maturation, en relation avec l’avancement de la maturation mais également d’autres facteurs, comme le nombre de pépins. Qualitativement et quantitativement, les teneurs évoluent peu après véraison. Il est suggéré que le pool tannique est acquis avant véraison. D’autre part, il est montré une relation entre le nombre de pépins des baies et leur qualité.

The quantity and the quality of flavonoïds are important parts of the global quality of the grape berries. Especially, the tannins are responsible of some majors flavour properties of the red wines including colour, bitterness and astringency. Nevertheless, their synthesis and properties are still misunderstood. Thus, the comprehension of the relations between environment and setting of this tannic pool, up to the harvest of the grapes, is not sufficient. The tannin composition was monitored since the middle of the first growth period (30 days after the onset of flowering) to the average maturity, for two plots. The study the stage of the berries, and not the average value of the parameters. Thus, the contribution of a more functional relation between composition and physiological stage of the grape constitutes a powerful lever for interpretation. The composition in flavan-3-ols and in proanthocyanidins of skins were determined by HPLC reversed phase and by histochemistry. The linking of these two analytical techniques allowed the association of quantitative and spatial data. This original approach pointed out the importance of the period previous maturation in relation with the stage of maturation but also others factors, such as the number of seeds. There was little evolution of the tannins after veraison. It is suggested that the tannic pool is set before veraison. More, a relation between the number of seeds and the quality of the berries was shown.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Y. Cadot (1), M.T. Miňana (1), R. Champenois (1), M. Chevalier (2) and G. Barbeau (1)

(1) Unité Vigne et Vin, Institut National de la Recherche Agronomique, Centre de Recherches d’Angers, 42 rue Georges Morel, 49071 Beaucouzé Cedex, France
(2) Unité Mixte de Recherche Génétique et Horticulture (GenHort), Institut National de la Recherche Agronomique, Centre de Recherches d’Angers, 42 rue Georges Morel, 49071 Beaucouzé Cedex, France

Contact the author

Keywords

Tannins, maturation, Vitis vinifera var. cabernet franc, skin, seed, histochemistry

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.

Relative impact of crop size and leaf removal on aromatic compounds and phenolic acids of Istrian Malvasia wine

Although several studies investigated the impact of crop size or fruit zone microclimate on aromatic or phenolic composition of wines, the effects of these two practices were not assessed and compared in the same study through a technological experiment within the same vineyard. Therefore, their relative effectiveness is hard to compare, which in turn is essential for providing producers with valuable information as a basis to choose adequate approach in yield and canopy management. The aim of the study was to investigate the effects of two crop sizes and two different fruit zone microclimate conditions obtained by leaf removal in a two-factorial experiment, in order to assess and compare their relative impact on Istrian Malvasia (Vitis vinifera L.) white wine aroma and phenolic composition.