Terroir 2004 banner
IVES 9 IVES Conference Series 9 Applications of Infrared Spectroscopy from laboratory to industry

Applications of Infrared Spectroscopy from laboratory to industry

Abstract

The grape and wine industries have long sought rapid, reliable and cost-effective methods to screen and monitor all the stages of the winemaking process, which include grape ripening in the vineyard, harvest and grape reception at the weighbridge, the fermentation stage and the bottling of the final product. Primary requirements of effective quality control in this environment would include the handling of complex sample matrices, a high degree of automation, precision, accuracy and where relevant, good agreement with the reference methods conventionally used for grape and wine analysis. Although conventional chemical methods still remain the workhorse of the wine analytical laboratory, some disadvantages such as lengthy assay times, unsuitability for automation, labour-intensive activities and the generation of large amounts of chemical waste, place an obstacle in their use for rapid quality control purposes.
Infrared (IR) spectroscopy is not a new application in the field of analytical chemistry. Recent improvements in IR instrumentation and the development of innovative and powerful software applications have optimised this technology. Currently, multi-component analytical instruments with impressive performance data in terms of simple sample handling, accuracy, precision and speed of analysis, are commercially available. The technology is based on the measurement of vibrational frequencies of covalent bonds in functional groups such as C-C, C-H, O-H, C=O and N-H, upon absorption of radiation in the IR region of the electromagnetic spectrum. Since IR spectroscopy is an indirect method employing empirical correlations between compositional and/or functional quality attributes and the IR spectra of samples, multivariate data analytical techniques are used to establish these correlations.
This presentation highlights the use of near infrared (700-2500 nm) and mid infrared (2500 – 5 x 104 nm) spectroscopy for quantitative and qualitative applications in the grape and wine industries. These include the measurement of colour, sugar and acidity in grapes, as well as the quantification of routine wine parameters such as pH, volatile acidity, titratable acidity, alcohol and sugar in wine. Industrial applications include the streaming of grape juice based on colour measurement. Future directions in IR spectroscopy regarding wine flavour analysis and product authentication are discussed.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

H. Nieuwoudt (1) and F. Bauer (1)

(1) Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

The shelf life of food is defined as the period in which the product will remain safe, is certain to retain desired sensory, chemical, physical, and microbiological characteristics

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

Merano Wine Festival 2020

IVES was a partner of the Merano Wine Festival (innovation section), a digital event held from 6 to 10 November 2020. During this festival participants attended scientific conferences on cutting-edge topics for the wine industry. Some of the topics covered have been selected from our journals

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.

Étude intégrée et allégée des terroirs viticoles en Anjou: caractérisation et zonage de l’unité terroir de base, en relation avec une enquête parcellaire

The terroir concept is presented as the basis of the A.O.C system, in the french vineyards. The “Anjou terroirs” programme aims at bringing the necessary scientific basisfor a rational and reasoned exploitation of the terroir. lt must lead to finalizing a lighter, more relevant integrated method of characterisation wich could be generally applied.