Terroir 2004 banner
IVES 9 IVES Conference Series 9 Applications of Infrared Spectroscopy from laboratory to industry

Applications of Infrared Spectroscopy from laboratory to industry

Abstract

The grape and wine industries have long sought rapid, reliable and cost-effective methods to screen and monitor all the stages of the winemaking process, which include grape ripening in the vineyard, harvest and grape reception at the weighbridge, the fermentation stage and the bottling of the final product. Primary requirements of effective quality control in this environment would include the handling of complex sample matrices, a high degree of automation, precision, accuracy and where relevant, good agreement with the reference methods conventionally used for grape and wine analysis. Although conventional chemical methods still remain the workhorse of the wine analytical laboratory, some disadvantages such as lengthy assay times, unsuitability for automation, labour-intensive activities and the generation of large amounts of chemical waste, place an obstacle in their use for rapid quality control purposes.
Infrared (IR) spectroscopy is not a new application in the field of analytical chemistry. Recent improvements in IR instrumentation and the development of innovative and powerful software applications have optimised this technology. Currently, multi-component analytical instruments with impressive performance data in terms of simple sample handling, accuracy, precision and speed of analysis, are commercially available. The technology is based on the measurement of vibrational frequencies of covalent bonds in functional groups such as C-C, C-H, O-H, C=O and N-H, upon absorption of radiation in the IR region of the electromagnetic spectrum. Since IR spectroscopy is an indirect method employing empirical correlations between compositional and/or functional quality attributes and the IR spectra of samples, multivariate data analytical techniques are used to establish these correlations.
This presentation highlights the use of near infrared (700-2500 nm) and mid infrared (2500 – 5 x 104 nm) spectroscopy for quantitative and qualitative applications in the grape and wine industries. These include the measurement of colour, sugar and acidity in grapes, as well as the quantification of routine wine parameters such as pH, volatile acidity, titratable acidity, alcohol and sugar in wine. Industrial applications include the streaming of grape juice based on colour measurement. Future directions in IR spectroscopy regarding wine flavour analysis and product authentication are discussed.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

H. Nieuwoudt (1) and F. Bauer (1)

(1) Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Evaluation of climate change impacts at the Portuguese Dão terroir over the last decades: observed effects on bioclimatic indices and grapevine phenology

In the last decades the growers of the Portuguese Dão winegrowing region (center of Portugal) are experiencing changes in climate that are influencing either grape phenology berry health and ripening. Aiming to study the relationships between climate indices (CI), seasonal weather and grapevine phenology, in this work long-term climate and phenological data collected at the experimental vineyard of the Portuguese Dão research centre between 1958 and 2019 (61 years) for the red variety Touriga Nacional, was analyzed. The trends over time for the classical temperature-based indices (Growing Season Temperature – GST -, Growing Degree Days – GDD, Huglin Index – HI and Cool Night Index – CI) presented a significantly positive slope while the Dryness Index (DI) showed a negative trend over the last 61 years. Regarding grapevine phenology, an average advance of 4.5 days per decade in the harvest day was observed throughout the last 61 years. Consequently, the weather conditions during the ripening period have changed, showing an increasing trend over time in the average temperature (higher magnitude in the maximum than in the minimum temperature) and a decrease in the accumulated rainfall. A regression analysis showed that ~50% of harvest date variability over years was explained by the temperature-based indices variability. These observed effects of climate change on bioclimatic indices and corresponding anticipation of harvest date can still be considered advantageous for the Dão terroir as it allows to achieve an optimal berry ripening before the common equinox rains and, therefore, avoid the potential negative impacts of the rainfall on berry health and composition.

Quantification of Eugenol in various matrixes from hybrids vines. Case study of Armagnac white spirits production

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference.

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation.

The drought, the temperature, and the time: drivers of osmotic adjustment?

Context and purpose of the study. Leaf osmotic adjustment (i.e., active accumulation of osmolytes in the cells) has been reported in grapevines in response to drought and as a natural process throughout the growing season (seasonal osmotic adjustment).

Influence of protective colloids on tartrate stability, polysaccharide contents and volatile compound profile of a white wine

The tartaric salts precipitation is one of the main issues regarding wine instability 1. In addition to the well-known and deeply studied phenomena of potassium hydrogentartrate precipitation (KHT), the last decade has been increased the phenomena of calcium tartrate (CaT) precipitation, that is a concern for the wine industry 2.