Terroir 2004 banner
IVES 9 IVES Conference Series 9 Applications of Infrared Spectroscopy from laboratory to industry

Applications of Infrared Spectroscopy from laboratory to industry

Abstract

The grape and wine industries have long sought rapid, reliable and cost-effective methods to screen and monitor all the stages of the winemaking process, which include grape ripening in the vineyard, harvest and grape reception at the weighbridge, the fermentation stage and the bottling of the final product. Primary requirements of effective quality control in this environment would include the handling of complex sample matrices, a high degree of automation, precision, accuracy and where relevant, good agreement with the reference methods conventionally used for grape and wine analysis. Although conventional chemical methods still remain the workhorse of the wine analytical laboratory, some disadvantages such as lengthy assay times, unsuitability for automation, labour-intensive activities and the generation of large amounts of chemical waste, place an obstacle in their use for rapid quality control purposes.
Infrared (IR) spectroscopy is not a new application in the field of analytical chemistry. Recent improvements in IR instrumentation and the development of innovative and powerful software applications have optimised this technology. Currently, multi-component analytical instruments with impressive performance data in terms of simple sample handling, accuracy, precision and speed of analysis, are commercially available. The technology is based on the measurement of vibrational frequencies of covalent bonds in functional groups such as C-C, C-H, O-H, C=O and N-H, upon absorption of radiation in the IR region of the electromagnetic spectrum. Since IR spectroscopy is an indirect method employing empirical correlations between compositional and/or functional quality attributes and the IR spectra of samples, multivariate data analytical techniques are used to establish these correlations.
This presentation highlights the use of near infrared (700-2500 nm) and mid infrared (2500 – 5 x 104 nm) spectroscopy for quantitative and qualitative applications in the grape and wine industries. These include the measurement of colour, sugar and acidity in grapes, as well as the quantification of routine wine parameters such as pH, volatile acidity, titratable acidity, alcohol and sugar in wine. Industrial applications include the streaming of grape juice based on colour measurement. Future directions in IR spectroscopy regarding wine flavour analysis and product authentication are discussed.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

H. Nieuwoudt (1) and F. Bauer (1)

(1) Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

The role of œnology in the enhancement of terroir expression

The reality of terroir is reflected by the typicality that it confers on the wine. The relationship between the origin of wine and its quality did already exist before the appearance of œnological science. Producers and merchants have always tried to improve wine quality in order to satisfy their clients.

Impacts of climate change on cv. Glera buds’ fruitfulness – 18 years of monitoring in the Conegliano-Valdobbiadene area, Italy

Context and purpose of the study. The vine is generally a very fertile plant when compared to other tree species.

Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Among the many compounds in wine, condensed tannins play an important role in the organoleptic properties of the products; they are partly responsible for astringency, bitterness and also contribute to the color. This research work aims to study the oxidation state of these bio-heteropolymers which is an important lock in the analysis of processed products in order to better control their quality. Indeed, their identification remains at present a challenge because of the large heterogeneity of their degrees of polymerization (DP) based on 4 monomers (epicatechin, catechin, epigallocatechin, epicatechin-3-O-gallate) thus multiplying the number of oxidation products.

Aroma characterisation of mold resistant sparkling wines produced in a warm-temperate area

In recent years, resistant varieties have returned to the attention of the wine sector as a response to climate change and the reduction of pesticides in grapevine management, which is the main culprit of pesticide use in European agriculture. In this context, the production of sparkling wines could be strongly influenced due to its requirements for a particular balance between sugars and acidity, and the necessity of sound grapes to ensure wine quality. However, these parameters are not the only ones that define the suitability of a grape variety to produce sparkling wine.

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses.