Terroir 2004 banner
IVES 9 IVES Conference Series 9 Applications of Infrared Spectroscopy from laboratory to industry

Applications of Infrared Spectroscopy from laboratory to industry

Abstract

The grape and wine industries have long sought rapid, reliable and cost-effective methods to screen and monitor all the stages of the winemaking process, which include grape ripening in the vineyard, harvest and grape reception at the weighbridge, the fermentation stage and the bottling of the final product. Primary requirements of effective quality control in this environment would include the handling of complex sample matrices, a high degree of automation, precision, accuracy and where relevant, good agreement with the reference methods conventionally used for grape and wine analysis. Although conventional chemical methods still remain the workhorse of the wine analytical laboratory, some disadvantages such as lengthy assay times, unsuitability for automation, labour-intensive activities and the generation of large amounts of chemical waste, place an obstacle in their use for rapid quality control purposes.
Infrared (IR) spectroscopy is not a new application in the field of analytical chemistry. Recent improvements in IR instrumentation and the development of innovative and powerful software applications have optimised this technology. Currently, multi-component analytical instruments with impressive performance data in terms of simple sample handling, accuracy, precision and speed of analysis, are commercially available. The technology is based on the measurement of vibrational frequencies of covalent bonds in functional groups such as C-C, C-H, O-H, C=O and N-H, upon absorption of radiation in the IR region of the electromagnetic spectrum. Since IR spectroscopy is an indirect method employing empirical correlations between compositional and/or functional quality attributes and the IR spectra of samples, multivariate data analytical techniques are used to establish these correlations.
This presentation highlights the use of near infrared (700-2500 nm) and mid infrared (2500 – 5 x 104 nm) spectroscopy for quantitative and qualitative applications in the grape and wine industries. These include the measurement of colour, sugar and acidity in grapes, as well as the quantification of routine wine parameters such as pH, volatile acidity, titratable acidity, alcohol and sugar in wine. Industrial applications include the streaming of grape juice based on colour measurement. Future directions in IR spectroscopy regarding wine flavour analysis and product authentication are discussed.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

H. Nieuwoudt (1) and F. Bauer (1)

(1) Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

Linear sweep voltammetry to classify and characterize the antioxidant properties of tannins

In recent years, numerous studies have been carried out at the OIV on oenological tannins, both with regard to oenological properties and methods of characterization. The results of these recent studies have led to the revision of the general monograph and the drafting of four new monographs, one for each of the four chemical classes into which the tannins have been grouped: ellagitannins, gallotannins, procyanidins/prodelphinidins, profisetinidins/prorobinetinins.

Le Pinot noir dans la zone AOC des “Colli Orientali del Friuli” (nord-est de l’Italie) : influence de la forme de taille sur les paramètres viticoles et œnologiques du raisin et du vin

Pinot noir is an interesting vat variety for the high quality products it provides in the most suitable areas. In France, the most important Pinot Noir growing areas are Burgundy, Champagne, Alsace and the Loire. In Italy, Pinot Noir is grown almost exclusively in the northern regions of Trentino-Alto Adige, Lombardy and Friuli-Venezia Giulia.

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for