Terroir 2004 banner
IVES 9 IVES Conference Series 9 Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

Abstract

The South African wine industry is taking an interest in the enhancement of red wine total antioxidant capacity (TAC) with retention of sensory quality to satisfy the demands of increasingly discerning consumers. The focus is especially on the unique South African red wine cultivar, Pinotage. Pinotage has a unique phenolic composition and commercial Pinotage wines (1998 vintage) has an average TAC of 15.3 mM Trolox equivalents which compares well with that of Cabernet Sauvignon. Knowledge of wine phenolic composition, the antioxidant activity of individual phenolic compounds and their respective contribution to the TAC of wines are needed to evaluate the importance of individual phenolic compounds. The TAC of wines could then be manipulated optimally by using viticultural and enological practices to enhance the content of compounds contributing significantly to the TAC. The aim of the study was to determine the antioxidant activity of individual phenolic compounds in Pinotage wines and their contribution to TAC.
A series of 20 young Pinotage wines were analysed to determine their phenolic composition (reversed-phase HPLC) and TAC (ABTS radical cation scavenging assay). Compounds identified include gallic acid, caftaric acid, caffeic acid, coutaric acid, catechin, procyanidin B1, myricetin-3-glucoside (glc), quercetin-3-glc, kaempferol-3-glc, quercetin-3-rhamnoside, myricetin, quercetin, kaempferol, isorhamnetin, delphinidin-3-glc, peonidin-3-glc, petunidin-3-glc, malvidin-3-glc, delphinidin-3-glc-acetate, vitisinA, petunidin-3-glc-acetate, peonidin-3-glc-acetate, malvidin-3-glc-acetate and malvidin-3-glc-coumarate. The polymeric content of each wine was also estimated as mg catechin equivalents/L. Individual phenolic compounds, available as pure standards (gallic acid, caffeic acid, catechin, procyanidin B1, myricetin-3-glc, quercetin-3-glc, kaempferol-3-glc, quercetin-3-rhamnoside, myricetin, quercetin, kaempferol, isorhamnetin, delphinidin-3-glc, peonidin-3-glc, petunidin-3-glc, malvidin-3-glc), were tested at a range of concentrations and their Trolox equivalent antioxidant capacity (TEAC) values calculated.
Taking the concentration and TEAC values of 24 monomeric phenolic compounds which could be quantified, into account, only 14% of the TAC of the wines could be explained. Possible synergism was ruled out, as the measured and calculated TAC of a mixture of phenolic standards was within the experimental error. Sulphur dioxide additions to the phenolic mixtures at two concentrations had no effect on their TAC. To estimate the contribution of polymeric compounds ultrafiltration was performed in an attempt to separate monomers and polymers in 3 wines. The polymeric compounds, and possibly proteins, isolated using ultrafiltration (50000 dalton nominal molecular weight cut-off), contribute about 30% of their TAC values. A large fraction (59%) of the TAC of a wine is due to unknown compounds which may or may not be phenolic.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Dalene de Beer (1), Elizabeth Joubert (2), Johann Marais (2), Marena Manley (1)

(1) Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
(2) Post-Harvest and Wine Technology, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Fully automated non-targeted GC-MS data analysis

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition.

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management.

The interplay between grape ripening and weather anomalies – A modeling exercise

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.

Sustainablity of vineyards in the Priorat region (NE Spain)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...