Terroir 2004 banner
IVES 9 IVES Conference Series 9 Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

Abstract

The South African wine industry is taking an interest in the enhancement of red wine total antioxidant capacity (TAC) with retention of sensory quality to satisfy the demands of increasingly discerning consumers. The focus is especially on the unique South African red wine cultivar, Pinotage. Pinotage has a unique phenolic composition and commercial Pinotage wines (1998 vintage) has an average TAC of 15.3 mM Trolox equivalents which compares well with that of Cabernet Sauvignon. Knowledge of wine phenolic composition, the antioxidant activity of individual phenolic compounds and their respective contribution to the TAC of wines are needed to evaluate the importance of individual phenolic compounds. The TAC of wines could then be manipulated optimally by using viticultural and enological practices to enhance the content of compounds contributing significantly to the TAC. The aim of the study was to determine the antioxidant activity of individual phenolic compounds in Pinotage wines and their contribution to TAC.
A series of 20 young Pinotage wines were analysed to determine their phenolic composition (reversed-phase HPLC) and TAC (ABTS radical cation scavenging assay). Compounds identified include gallic acid, caftaric acid, caffeic acid, coutaric acid, catechin, procyanidin B1, myricetin-3-glucoside (glc), quercetin-3-glc, kaempferol-3-glc, quercetin-3-rhamnoside, myricetin, quercetin, kaempferol, isorhamnetin, delphinidin-3-glc, peonidin-3-glc, petunidin-3-glc, malvidin-3-glc, delphinidin-3-glc-acetate, vitisinA, petunidin-3-glc-acetate, peonidin-3-glc-acetate, malvidin-3-glc-acetate and malvidin-3-glc-coumarate. The polymeric content of each wine was also estimated as mg catechin equivalents/L. Individual phenolic compounds, available as pure standards (gallic acid, caffeic acid, catechin, procyanidin B1, myricetin-3-glc, quercetin-3-glc, kaempferol-3-glc, quercetin-3-rhamnoside, myricetin, quercetin, kaempferol, isorhamnetin, delphinidin-3-glc, peonidin-3-glc, petunidin-3-glc, malvidin-3-glc), were tested at a range of concentrations and their Trolox equivalent antioxidant capacity (TEAC) values calculated.
Taking the concentration and TEAC values of 24 monomeric phenolic compounds which could be quantified, into account, only 14% of the TAC of the wines could be explained. Possible synergism was ruled out, as the measured and calculated TAC of a mixture of phenolic standards was within the experimental error. Sulphur dioxide additions to the phenolic mixtures at two concentrations had no effect on their TAC. To estimate the contribution of polymeric compounds ultrafiltration was performed in an attempt to separate monomers and polymers in 3 wines. The polymeric compounds, and possibly proteins, isolated using ultrafiltration (50000 dalton nominal molecular weight cut-off), contribute about 30% of their TAC values. A large fraction (59%) of the TAC of a wine is due to unknown compounds which may or may not be phenolic.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Dalene de Beer (1), Elizabeth Joubert (2), Johann Marais (2), Marena Manley (1)

(1) Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
(2) Post-Harvest and Wine Technology, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

Influence of nitrogen supply on colorimetric parameters of Lugana wines

AIM: Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes. This study aims to evaluate the color differences on Lugana wines that are fermented with different yeast and nitrogen supply.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

Copper reduction strategy for sangiovese in organic viticulture

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently.