Terroir 2004 banner
IVES 9 IVES Conference Series 9 Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

Abstract

The South African wine industry is taking an interest in the enhancement of red wine total antioxidant capacity (TAC) with retention of sensory quality to satisfy the demands of increasingly discerning consumers. The focus is especially on the unique South African red wine cultivar, Pinotage. Pinotage has a unique phenolic composition and commercial Pinotage wines (1998 vintage) has an average TAC of 15.3 mM Trolox equivalents which compares well with that of Cabernet Sauvignon. Knowledge of wine phenolic composition, the antioxidant activity of individual phenolic compounds and their respective contribution to the TAC of wines are needed to evaluate the importance of individual phenolic compounds. The TAC of wines could then be manipulated optimally by using viticultural and enological practices to enhance the content of compounds contributing significantly to the TAC. The aim of the study was to determine the antioxidant activity of individual phenolic compounds in Pinotage wines and their contribution to TAC.
A series of 20 young Pinotage wines were analysed to determine their phenolic composition (reversed-phase HPLC) and TAC (ABTS radical cation scavenging assay). Compounds identified include gallic acid, caftaric acid, caffeic acid, coutaric acid, catechin, procyanidin B1, myricetin-3-glucoside (glc), quercetin-3-glc, kaempferol-3-glc, quercetin-3-rhamnoside, myricetin, quercetin, kaempferol, isorhamnetin, delphinidin-3-glc, peonidin-3-glc, petunidin-3-glc, malvidin-3-glc, delphinidin-3-glc-acetate, vitisinA, petunidin-3-glc-acetate, peonidin-3-glc-acetate, malvidin-3-glc-acetate and malvidin-3-glc-coumarate. The polymeric content of each wine was also estimated as mg catechin equivalents/L. Individual phenolic compounds, available as pure standards (gallic acid, caffeic acid, catechin, procyanidin B1, myricetin-3-glc, quercetin-3-glc, kaempferol-3-glc, quercetin-3-rhamnoside, myricetin, quercetin, kaempferol, isorhamnetin, delphinidin-3-glc, peonidin-3-glc, petunidin-3-glc, malvidin-3-glc), were tested at a range of concentrations and their Trolox equivalent antioxidant capacity (TEAC) values calculated.
Taking the concentration and TEAC values of 24 monomeric phenolic compounds which could be quantified, into account, only 14% of the TAC of the wines could be explained. Possible synergism was ruled out, as the measured and calculated TAC of a mixture of phenolic standards was within the experimental error. Sulphur dioxide additions to the phenolic mixtures at two concentrations had no effect on their TAC. To estimate the contribution of polymeric compounds ultrafiltration was performed in an attempt to separate monomers and polymers in 3 wines. The polymeric compounds, and possibly proteins, isolated using ultrafiltration (50000 dalton nominal molecular weight cut-off), contribute about 30% of their TAC values. A large fraction (59%) of the TAC of a wine is due to unknown compounds which may or may not be phenolic.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Dalene de Beer (1), Elizabeth Joubert (2), Johann Marais (2), Marena Manley (1)

(1) Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
(2) Post-Harvest and Wine Technology, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Capture depletion of grapevine DNA: an approach to advance the study of microbial community in wine

The use of next-generation sequencing (NGS) has helped understand microbial genetics in oenology. Current studies mainly focus on barcoded amplicon NGS but not shotgun sequencing, which is useful for functional analyses. Since the high percentage of grapevine DNA conceals the microbial DNA in must, the majority of sequencing data is wasted in bioinformatic analyses. Here we present capture depletion of grapevine whole genome DNA.

Identification of 4-hydroxy-2-nonenal, a gamma nonalactone precursor in must and wine from Bordeaux cultivars

Various molecular compounds are responsible for the complex mixture of fragrances that give wine its aroma. In particular, the ‘cooked fruit’ aroma found in red wines from hot and/or dry vintages or from the vinification of late harvested grapes has been intensively investigated in recent years. Lactones and especially γ-nonalactone were found to be responsible for the ‘cooked fruit’

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Evaluation of the hydroxyethyl radical formation kinetic and Strecker aldehydes distribution for assessing the oxidative susceptibility of Chardonnay wines

Over the last decade, much attention has been paid on the oxidative susceptibility of white wines, given its key role in determining their ageing potential.