Terroir 2004 banner
IVES 9 IVES Conference Series 9 Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

Abstract

The effect of Partial Rootzone Drying (PRD) on fruit and wine composition has been investigated. At harvest, total anthocyanin and phenolic concentration of Shiraz and Cabernet Sauvignon fruit was either unaltered or increased by PRD relative to control irrigation over two seasons. Where there was an increase in anthocyanin concentration with PRD, this was independent of berry size. In the 2002 season, total colour of Cabernet Sauvignon wine was enhanced by 10% in response to the PRD treatment although total anthocyanin concentration was unaltered in either fruit or wine. This colour enhancement was maintained after a year’s ageing in the bottle and was due to an increase in coloured pigments in co-pigmented or polymeric form, that is, in association with other anthocyanins or phenolic compounds. In both fruit and wine samples, PRD caused a decrease in the contribution of malvidin-glucosides to total anthocyanins. Thus, levels of non-malvidin glucosides, namely delphinidin and cyanidin were increased by PRD. This effect was investigated as fruit matured post-veraison, and was evident from early in berry development. Preliminary results indicate that this response requires the presence of high incident light levels to the bunch zone during development, but it is not mediated by increased bunch exposure alone. Shading of fruit led to a significant decrease in all anthocyanin types, and caused a shift in the ratio of acetyl- and 3p-coumaryl-glucosides to mono-glucosides. The PRD treatment, however, did not lead to changes in the proportions of acetyl-, 3p-coumaryl- and mono-glucoside anthocyanins. These results show that the response of the anthocyanin pathway to the PRD is most likely mediated by physiological signals within the fruit and vine, rather than due to a change in bunch microclimate.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Keren Bindon

Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, ZA 7600 Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Influence of the irrigation period in Tempranillo grapevine, under the edaphoclimatic conditions of the Duero river valley

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia/Germany. Part 2: regional zoning of vineyards based on local climatic classifications

En raison des vanations locales d’exposition et de déclivité, l’évaluation climatique des vignobles et des régions viticoles est très important pour la culture des raisins.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

Measurement of grape vine growth for model evaluation

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004.