Terroir 2004 banner
IVES 9 IVES Conference Series 9 Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

Abstract

The effect of Partial Rootzone Drying (PRD) on fruit and wine composition has been investigated. At harvest, total anthocyanin and phenolic concentration of Shiraz and Cabernet Sauvignon fruit was either unaltered or increased by PRD relative to control irrigation over two seasons. Where there was an increase in anthocyanin concentration with PRD, this was independent of berry size. In the 2002 season, total colour of Cabernet Sauvignon wine was enhanced by 10% in response to the PRD treatment although total anthocyanin concentration was unaltered in either fruit or wine. This colour enhancement was maintained after a year’s ageing in the bottle and was due to an increase in coloured pigments in co-pigmented or polymeric form, that is, in association with other anthocyanins or phenolic compounds. In both fruit and wine samples, PRD caused a decrease in the contribution of malvidin-glucosides to total anthocyanins. Thus, levels of non-malvidin glucosides, namely delphinidin and cyanidin were increased by PRD. This effect was investigated as fruit matured post-veraison, and was evident from early in berry development. Preliminary results indicate that this response requires the presence of high incident light levels to the bunch zone during development, but it is not mediated by increased bunch exposure alone. Shading of fruit led to a significant decrease in all anthocyanin types, and caused a shift in the ratio of acetyl- and 3p-coumaryl-glucosides to mono-glucosides. The PRD treatment, however, did not lead to changes in the proportions of acetyl-, 3p-coumaryl- and mono-glucoside anthocyanins. These results show that the response of the anthocyanin pathway to the PRD is most likely mediated by physiological signals within the fruit and vine, rather than due to a change in bunch microclimate.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Keren Bindon

Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, ZA 7600 Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Hidden costs of wine: quantifying environmental externalities of organic and integrated management

Agriculture is one of the largest contributors to environmental pollution and causing significant impacts on human health, ecosystems, and resource availability.

Early Elgo Demetra: the new pink table variety seedless with big berry and resistant

Context and purpose of the study – This paper presents is the create, the study and amplographic description the new pink “Early Elgo Demetra” variety.

The chain of effects between sunburn necroses and rot infestation in the context of climate change

Climate change will increasingly challenge future viticulture due to long-enduring and extreme weather conditions, jeopardizing yield and wine quality in various ways.

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.

Preliminary evaluation of agronomic and enological properties of preselected grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Cultivation of a few number of clones is causing the loss of vineyard biodiversity, resulting in the disappearance of biotypes that could be of interest to face future challenges,