Terroir 2004 banner
IVES 9 IVES Conference Series 9 Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

Abstract

The effect of Partial Rootzone Drying (PRD) on fruit and wine composition has been investigated. At harvest, total anthocyanin and phenolic concentration of Shiraz and Cabernet Sauvignon fruit was either unaltered or increased by PRD relative to control irrigation over two seasons. Where there was an increase in anthocyanin concentration with PRD, this was independent of berry size. In the 2002 season, total colour of Cabernet Sauvignon wine was enhanced by 10% in response to the PRD treatment although total anthocyanin concentration was unaltered in either fruit or wine. This colour enhancement was maintained after a year’s ageing in the bottle and was due to an increase in coloured pigments in co-pigmented or polymeric form, that is, in association with other anthocyanins or phenolic compounds. In both fruit and wine samples, PRD caused a decrease in the contribution of malvidin-glucosides to total anthocyanins. Thus, levels of non-malvidin glucosides, namely delphinidin and cyanidin were increased by PRD. This effect was investigated as fruit matured post-veraison, and was evident from early in berry development. Preliminary results indicate that this response requires the presence of high incident light levels to the bunch zone during development, but it is not mediated by increased bunch exposure alone. Shading of fruit led to a significant decrease in all anthocyanin types, and caused a shift in the ratio of acetyl- and 3p-coumaryl-glucosides to mono-glucosides. The PRD treatment, however, did not lead to changes in the proportions of acetyl-, 3p-coumaryl- and mono-glucoside anthocyanins. These results show that the response of the anthocyanin pathway to the PRD is most likely mediated by physiological signals within the fruit and vine, rather than due to a change in bunch microclimate.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Keren Bindon

Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, ZA 7600 Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

En la región vitivinícola con D.O. Montilla-Moriles (Córdoba) la variabilidad geologico-petrográfica de los terrenos es grande (ROLDÁN GARCÍA y DIVAR RODRÍGUEZ, 1988 a; roldán garcía et al.

The performance of grapevines on identified terroirs in Stellenbosch, South Africa

A terroir can be defined as a natural unit that is characterised by a specific agricultural potential, which is imparted by natural environmental features, and is reflected in the characteristics of the final product.

Harnessing whole genome sequencing data to predict protein structure and function variation in grapevine

Grapevine (Vitis vinifera) is amongst the world’s most cultivated fruit crops, and of global and economic significance, producing a wide variety of grape-derived products, including wine, and table grapes. The genus Vitis, encompassing approximately 70 naturally occurring inter-fertile species, exhibits extensive genetic and phenotypic diversity, highlighted by the global cultivation of thousands of predominantly Vitis vinifera cultivars. Despite the importance of harnessing its naturally occurring genetic diversity to pursue traits of interest, especially considering the continued and growing demand for sustainable high-quality grape production, the systematic characterization of available functional genetic variants remains limited.

A.O.C. taureau de Camargue

A.O.C. réservée aux viandes fraîches de bovins mâles ou femelles, nés, élevés et abattus dans une aire géographique définie (voir carte)

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.