Terroir 2004 banner
IVES 9 IVES Conference Series 9 The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

Abstract

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and viability in wine. This method distinguishes between live and dead cells. Research showed that little difference existed between plating and epifluorescence numbers to enumerate lactic acid bacteria in wine. However, a difference exists between these two methods to distinguish between acetic acid bacteria numbers in wine. Plating counting numbers were lower than plate numbers for Acetobacter pasteurianus in wine under anaerobic conditions. This difference was, however, negated by the addition of oxygen to the wine. SO2 additions lowered the culturability of A. pasteurianus at dosages higher than 0.35mg/L molecular SO2, but higher dosages were required to lower epifluorescence intensity, which is an indication of viability. Brettanomyces bruxellensis culturability was inhibited at lower dosages, but total cell numbers according to epifluorescence microscopy were affected at higher molecular SO2 dosages. Epifluorescence microscopy and plating also showed that B. bruxellensis was drastically affected after 120 min after molecular SO2 addition and it’s culturability after only 30 min. An exposure time of 5 min to molecular SO2 reduced the cell’s viability drastically and 45 min completely inhibiting the viability after two days. The bonded form of sulphur dioxide did not affect both micro-organisms. Epifluorescence microscopy can thus be used as a quick alternative to assess micro-organisms numbers and culturability in wine. This technique has both advantages and disadvantages over traditional enumeration methods, which will also be discussed.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

W.J. du Toit (1), I.S. Pretorius (1,2) and A. Lonvaud-Funel (3)

(1) Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, ZA 7600 Stellenbosch, South Africa
(2)The Australian Wine Research Institute, Waite Road, Urrbrae, SA 5064 Adealide, Australia
(3) Faculté d’Oenologie, 351, Cours de la Libération, 33405 Talence, France

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”.

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

Resilience analysis in viticulture: an approach based on expert knowledge elicitation

The study aims to address the issue of resilience to climate change in viticulture through the adoption of the expert knowledge elicitation (EKE) approach.

Greek and Cypriot grape varieties as a sustainable solution to mitigate climate change

Aim: The aim of this report is to present evidence on the potential of Greek and Cypriot grape varieties to serve as a sustainable solution to mitigate climate change.

Methods and Results: The work provides a review of recent works involving Greek and Cypriot varieties’ performance under high temperatures and increased dryness.

Progetto di zonazione delle valli di Cembra e dell’Adige. Analisi del comportamento della varietà Pinot nero in ambiente subalpino

Nel 1990 la Cantina LA VIS ha intrapreso un progetto di zonazione dei terreni vitati allo scopo di acquisire le conoscenze scientifiche atte a consentire il miglioramento delle qualità dei prodotti. Tale progetto si è articolato su di una superficie di 2000 ettari ubicati lungo l’asta fluviale del fiume Adige da Trento a Salorno e del torrente Avisio da Lavis a Segonzano.