Terroir 1996 banner
IVES 9 IVES Conference Series 9 Soil functional characteristics for qualitative Sangiovese wine production in Tuscany (Italy)

Soil functional characteristics for qualitative Sangiovese wine production in Tuscany (Italy)

Abstract

Le but de ce travail est de faire une synthèse des résultats de plusieurs années de recherche en Italie centrale, sur les caractéristiques fonctionnelles du sol pour la production de vin de qualité. Le cépage de référence est le Sangiovese. Un dispositif de 65 parcelles expérimentales a été utilisé pendant une période de 2 à 5 ans. Les paramètres étudiés sont les stades phénologiques, le rendement par pied, le nombre de grappes, le poids moyen des grappes, le taux d’accumulation des sucres dans les baies, en relation avec le débourrement végétatif, la floraison et la véraison. Les résultats œnologiques ont été mis en relation avec les stades phénologiques pour obtenir une grille de valeurs de référence pour chacun des principaux paramètres agronomiques considérés.

The aim of this work is to summarize the results of several years of research work carried out in Central Italy, concerning soil functional characteristics for qualitative wine production. The reference variety was the Sangiovese vine. A set of 65 experimental plots were utilized during a time span varying from two to five years. Yield components, as well as phenological phases, were recorded. The main chemical characteristics of the grapes from each experimental plot were analyzed at vintage and grape samples were processed using the standard techniques for small-lot wine making. A relationship was established between enological and phenological results. An evaluation of the performance of each experimental vineyard, for every year of trial, was made, and a classification of the plots in terms of matching the optimal phenology was obtained. A matching table considering soil functional parameters and their interaction against site performance classes was finally built up, the final aim being the zoning of wine territories. A selection of all the soil qualities studied was made in order to take into account those which proved to be more important and, at the same time, which it was possible to routinely survey, i.e. available water capacity, aggregate stability, degree of structure, class of internal drainage, presence of a water table, electrical conductivity, vertic properties, rooting depth.

 

 

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

E. A.C. COSTANTINI*, P. STORCHI**, S. PELLEGRINI*, R. BARBETI*

* Istituto Sperimentale per lo Studio e la Difesa del Suolo, Firenze, Italia
** Istituto Sperimentale per la viticoltura, Arezzo, Italia

Keywords

sol, caractéristiques fonctionnelles, Sangiovese, zonage, Italie
soil, functional characters, Sangiovese, zoning, Italy

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

The aim of this study was to evaluate the evolution of different chemical parameters and sensory impact on red wine during maturation in barrels or with new technologies

Wines empirical perception and growers management practices in the Anjou Villages Brissac vineyard (France)

The concept of viticultural terroir includes soil, sub-soil, and climatic factors but also many management viticultural and oenological practices which are chosen according to know-how of the winegrowers.

Sugar loading and phenolic accumulation as affected by ripeness level of Syrah/R99 grapes

Le chargement et l’accumulation des sucres ainsi que la biosynthèse des phénols ont été étudiés sur la Syrah, dans le cadre d’un programme de recherche de paramètres qui permettraient de déterminer une ou plusieurs qualités de raisin en relation avec des styles de vins pour un terroir donné. La relation entre la dynamique d’accumulation des

Bio-acidification of wines by Lachancea thermotolerans

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.