Terroir 1996 banner
IVES 9 IVES Conference Series 9 Response of the plant: a chief element for the characterisation of wine-growing “terroirs”

Response of the plant: a chief element for the characterisation of wine-growing “terroirs”

Abstract

Face au risque de banalisation des produits agroalimentaires, un intérêt toujours plus marqué se développe en faveur des produits du terroir. La viticulture a été pionnière en la matière et les études des effets du milieu naturel sur la qualité et la typicité des produits sont nombreuses et diverses.
La caractérisation des terroirs peut être faite facteur par facteur en analysant l’incidence des différents critères pris séparément. Elle peut être orientée vers la techerche de marqueurs susceptibles d’intégrer des facteurs liés au sol, au climat et à la plante.
L’approche peut être aussi globale par l’utilisation de systèmes d’information géographiques (SIG) capables de combiner un nombre très élevé de critères, grâce à des outils informatiques très puissants.
Indépendamment de la méthodologie choisie, les informations récoltées doivent être validées par l’étude du comportement de la plante en relafon avec la valeur des produits obtenus dans des terroirs déterminés. Le choix des méthodes de caractérisation va dépendre du niveau d’échelle souhaité qui peut aller de la micro parcelle à l’ensemble d’une région ou d’un pays. Il sera également fonction des objectifs recherchés, qui peuvent être divers, de la classification des crus à l’adaptation d’itinéraires viticoles appropriés.

Vis-à-vis the risk of vulgarising the agroalimentary products, an increasingly shown interest develops in favour of the “terroir” products. The viticulture blazed a trail in this field, and the studies of the effects of the natural environment on the quality and on the originality of the products are numerous and varied.
The characterisation of wine-growing “terroirs” can be done factor by factor by analysing the incidence of the various individual criteria. It can be directed towards the search for markers likely to integrate factors linked to the soil, the climate and the plant.
The approach can also be global by using geographical information systems (GIS) able to combine a very high number of criteria thanks to very powerful data-processing tools.
Independently of the chosen methodology, collected information must be validated by the study of plant behaviour in relation to the value of the products obtained in given “terroirs”. Choice of the characterisation methods will depend on the desired scale level, which can go from micro plot to a whole area or country. It will be also a function of the required objectives which can be diverse, from the vintage classification to the adaptation of suitable wine­growing practices.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

F. MURISIER (1), J.-L. SPRING (1), S. BURGOS2) and V. ZUFFEREY (1)

(1) Station fédérale de recherches en production végétale de Changins, CH-1260 Nyon-Suisse
(2) Ecole d’ingénieurs de Changins, CH-1260 Nyon

Contact the author

Keywords

Caractérisation, terroirs viticoles, sols, climat, plante
Characterisation, wine terroir, soils, climate, plant

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Unraveling the role of grape cell wall in shaping the fermentation rate, the polyphenolic profile and quality of red wines from disease-resistant and drought-tolerant grapes in Occitanie varietal selection

Climate change and an evolving environmental and societal context call for the exploration of disease-resistant and/or drought-adapted grape varieties that meet the demands of consumers and society.

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

Transcriptomic analyses of wild Vitis species under drought conditions for next-generation breeding of grapevine rootstocks

Drought is one of the main challenges for viticulture in the context of climate change. Selecting drought-tolerant plant material can be an effective strategy for a sustainable viticulture.

Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints

Oak is the main material used in cooperage for making barrels and wood chips destined to aged spirits and wines. Quercus alba L., Quercus petraea L. and Quercus robur L. are three of the most commonly used oak species in cooperage companies.