Terroir 1996 banner
IVES 9 IVES Conference Series 9 Spatial characterization of land use in the viticultural Maipo Valley (Chile), using aster image digital processing

Spatial characterization of land use in the viticultural Maipo Valley (Chile), using aster image digital processing

Abstract

[English version below]

L’entreprise viticole Concha y Toro S.A. gère environ 600 ha de vignes dans la Vallée du Maipo (A.O. Valle del Maipo). L’objectif est celui de caractériser spatialement ces vignobles et leur occupation du sol environnante. Le choix s’est porté vers la démarche de zonage viticole par l’analyse spatiale, utilisant des traitements d’images satellitaires afin d’avoir une vision synoptique de la zone à moindres coûts et délais. Un système d’informations géographiques (SIG) est construit à partir des données suivantes : cartes topographiques, géologique, fond cadastral numérique, images satellitaires. Un modèle numérique de terrain est par ailleurs construit à une résolution de 25 m à partir des cartes topographiques. Deux images Aster (résolution de 15 m) prises au mois d’octobre 2000 et janvier 2001 ont été choisies. Une cartographie de l’occupation du sol a été effectuée sur l’image satellitaire de janvier nous permettant par ailleurs d’actualiser les cartes topographiques datant de 1974, en raison notamment de l’expansion urbaine de la ville de Santiago en périphérie des vignes. Par ailleurs, l’étude diachronique mise en œuvre conduit à analyser les comportements spectraux des vignes et des sols et leur évolution spectrale entre les deux dates retenues.

Concha y Toro S.A. wine enterprise controls about 600 hectares of vineyards in the Maipo Valley (A.O. Valle del Maipo). Our purpose is to carry out a spatial characterization of vineyards and their surrounding land use, based on spatial analysis and using satellite image processing which enables to get a broad synoptic vision of the area at low cost. A geographic information system (GIS) is built with the following data: topographic maps, geological maps, digital cadastral database and satellite images. A digital elevation model (DEM) is made from the topographic maps at a 25 meters-resolution. Two high resolutions Aster images (15 meters) captured in October 2000 and January 2001 were chosen. Land use is spatially characterized using the January image. It enables us to update the land use cover extracted from the topographic maps and dating 1974, especially because of the urban sprawl of the city of Santiago amongst vines. More, the image diachronic study leads to analyze the spectral behavior of vine and soil and its evolution from January to February 2001.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

P. PARRA (1), E. VAUDOUR (1), M. C. GIRARD (1), E. HOLZAPFEL (2)

(1) Institut National Agronomique Paris-Grignon – UFR A GER/DM OS – Centre de Grignon BP0 1 – 78850 Thiverval Grignon – France
(2) Entreprise Viticole Concha y Toro – Gerencia Agricola – Avenida Nueva Tajamar 481, Torre Norte, oficina 306 – Santiago – Chile

Keywords

occupation du sol, sol, télédétection, vallée du Maipo, SIG, appellation d’origine
land use, soil, remote sensing, Maipo Valley, GIS, appellation of origin

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Does spotted lanternfly phloem-feeding have downstream effects on wine volatiles? Preliminary insights into compositional shifts

The Spotted lanternfly (SLF), first detected in the U.S. in 2014, is an invasive phloem-feeding planthopper that poses a growing threat to grape and wine production in the U.S. In Pennsylvania, where it was first detected, reductions in grapevine production and fruit quality have been reported by commercial growers. Recent advances have begun to elucidate how SLF affects grapevine physiology and resource allocation, but no research has identified how SLF affects wine chemical composition and quality. Documented reductions in fruit sugar allocation due to heavy SLF phloem-feeding may have downstream effects on wine fermentation dynamics. Additionally, secondary metabolic responses stimulated by SLF may also influence berry chemical composition. The present study investigated SLF-mediated effects on wine composition through analysis of the volatile composition of wines produced from white- and red-fruited varieties of different Vitis parentage (e.g., Vitis vinifera vs. interspecific hybrids) following prolonged exposure to adult SLF phloem-feeding.

The role of ampelographic collection in genetic improvement of native varieties and the creation new varieties

The available plant diversity is maintained in global genetic collections and germplasm banks. One of the main objectives of the study of the genetic material of vine still conducting research to characterize the genotypes and the creation of new varieties. The main ampelographic collection of the country, the largest in the Balkans, is located at the Athens Vine Institute in Lykovrisi, Attica, in an area of 70 acres. It contains more than 800 varieties, most of which are indigenous. The Institute is conducting research on the genetic improvement of native varieties and the creation new winemaking and table grape varieties of high productivity, grape quality, resistance to fungal diseases and their adaptability to stresses using the hybridization method using European high-quality varieties.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.