Terroir 1996 banner
IVES 9 IVES Conference Series 9 Application of viticulture zoning in Istria (Croatia) as important element for valorization of all territory resources (product, environment, tourism and others)

Application of viticulture zoning in Istria (Croatia) as important element for valorization of all territory resources (product, environment, tourism and others)

Abstract

[English version below]

Un projet touristique innovant est en cours dans la zone historique croate d’Istrie Centrale, autour de la magnifique ville de Motovun. L’approche méthodologique repose sur le concept de «Système Productif-Global du Territoire» et s’appuie tout particulièrement sur celui de « Zonage Vitivinicole ». Elle tient compte de toutes les facettes, définies dans celui de « Grand Zonage » (Cargnello G., 1999). L’une des composantes fondamentales dans ce zonage vitivinicole est la prise en considération du Teran, variété intéressante autochtone historique, qui produit un vin rouge très typique et très lié au milieu. Dans ce programme de zonage vitivinicole, ce vin a été « restauré » à travers une sélection clona le appropriée et l’application en vignoble et en cave de techniques et technologies d’innovation, en tenant compte bien évidemment du produit, du consommateur et du producteur. Dans ce zonage vitivinicole, on a pris en considération par ailleurs les lieux, les dispositions foncières, l’orientation des rangs, les strµctures portantes (hauteurs, matériels, etc.), les systèmes de conduite, les systèmes de taille, la gestion de la végétation, de la production et de la vendange, les structures de transformation et de mise en bouteilles, ainsi que des aspects de communication et de marketing, et encore les structures pour la restauration et pour l’hébergement des touristes.

For construction of one innovative tourist project, was taken the historie zone of central Istria, the city of Motovun, with a rich agriculture and other territory resources. The project was done according facts of Global productive system of territory, with special accent to application of Global productive system of viticulture territory, as previously described Cargnello (1999) in the works about “grande” zoning. One very important component in the valorization process of Motovun city is certainly vine variety named Teran. Variety Teran done the red, hard vine, very special for agro-climatic condition of Motovun area. In this research was done the “reconstruction” of this historie variety, with aim to change in viticulture and vine technology, taken all specificity of tourist market and producer skills. For needs of zoning investigation was taken all specific factors of Motovun area, like: characteristic of soil, the vineyards surfaces, training form, yield and other. The special accent was done to marketing of product, in the chain grape-cellar-win-bottle-consumer. Like a specific consumer in this zone, exist the seasonal tourist market.

DOI:

Publication date: February 11, 2022

Issue: Terroir 2002

Type: Article

Authors

A.MILOTIC (1); D. PERSURIC (1); G. CARGNELLO (2); K.KNAUS (1); R. VELENIK. (1); M. STAVER (1)

(1) Institute for Agriculture and Tourism, C. Hugues 8 -52440 Porec -Croatia (HR)
(2) SOC Tecniche Colturali – Istituto Sperimentale per la Viticoltura, Viale XXVIII Aprile, 26 31015 Conegliano (Treviso) – Italie

Contact the author

Keywords

zonage vitivinicole, Teran, ressource territoire, Motovun
viticulture zoning, teran, territory resource, Motovun

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality.

A viticultural perspective of Meso-scale atmospheric modelling in the Stellenbosch wine growing area, South Africa

La brise de mer et les facteurs climatiques qu’elle entraîne (accélération de la vitesse du vent au cours de l’après midi, augmentation de l’humidité et baisse de la temperature) sont d’un intérêt particulier pour la viticulture.

Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

We compared 68 aroma compounds in wines from 5 vineyards in order to see similarities among the wine aroma and the scent of some of the main native plants from the respective vineyards.

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.