Terroir 1996 banner
IVES 9 IVES Conference Series 9 “Garrigues”, part of the mediterranean vine terroirs

“Garrigues”, part of the mediterranean vine terroirs

Abstract

[English version below]

Les paysages viticoles méditerranéens présentent une originalité qui ne se retrouve nulle part ailleurs : ils associent des garrigues très odoriférantes à des parcelles de vignes souvent qualitatives. La connaissance empirique des vins du Languedoc par leurs dégustateurs a conduit la Chambre d’Agriculture de l’Hérault à supposer que les arômes de la garrigue environnante peuvent se retrouver dans les vins (arômes de ciste, de genévrier, … ) Grâce à la collaboration d’une cave coopérative héraultaise, des essais ont été mis en place pour vérifier cette hypothèse. Ils comportent une première partie expérimentale, débutée en 2000, basée sur la comparaison d’échantillons de vins de Grenache, provenant de mini­ récoltes (50 kg) de parcelles très contrastées de par leur environnement de garrigue. La seconde partie des essais a débuté en 2001 et consiste en une sélection parcellaire au terroir de parcelles de grenache qualitatives entourées de garrigues et entourées de vignes (5 ha par lot environ.) Chaque lot est vinifié séparément par la cave coopérative. Les premiers résultats de dégustation sont très encourageants. Ils montrent que les spécificités de l’environnement naturel des vignes méditerranéennes pourront probablement être valorisées à terme par l’élaboration de vins originaux et difficilement imitables sur le marché.

The mediterranean viticultural landscapes are made of original patterns of qualitative vineyards alterning with odorous garrigues. Some connoisseurs of the Languedoc wines noted typical aromas of garrigue plants in the wines made from the most isolated vineyards. The Hérault Chamber of Agriculture decided to study whether these assumptions can be validated or not, in order to valorize the regional typicity of these wines. Two experiments were made on the vineyard of a partner wine coop. The first one, started in 2000, compares two samples of grenache wines made from vinifications of about 50 kg of grapes, each plot being located in contrasted places (one bordered by garrigues and one by vines). The second one started in 2001 and consists in the wine- making from a selection of about 10 ha of qualitative vines of grenache, 5 ha among garrigues and 5 ha among other vines. The first winetastings are very promising. They show that one must consider the wild environment as a whole part of the vine terroir definition, on the understanding that the potentiality of a terroir can only be expressed by vines technically perfect.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

William TRAMBOUZE (1), Jean-Pierre ARGILLIER (2), Nathalie GOMA-FORTIN (1)

(1) Chambre d’agriculture de l’Hérault, BP 83, allée du Géreral Montagne, 34120 Pézenas
(2) Chambre d’agriculture de l’Hérault, Maison des agriculteurs, Mas de Saporta, 34970 Lattes

Contact the author

Keywords

terroir viticole, garrigue, sélection parcellaire, typicité du vin
vine terroir, garrigue, vineyard selection, wine typicity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination (δ13C) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

Consumer preference favors flint-glass wine bottles over the traditional dark-colored, but it is documented that light exposure can cause white wines to produce off-aromas and change in color, and consequently da[1]mage their quality. Aim of the study was to study the white wine shelf life under the typical supermarket conditions, by recording the light and temperature exposure, the colorimetric changes, and the light-strike fault. METHODS: One pilot experiment based on two white wines and eight-time points and one kinetic experiment based on four white wines and seven-time points were designed and realized using a typical supermarket shelf for 32 and 50 days, correspondently. By installing prototype sensors at 32 points of the shelf, the temperature, UV, IR, and Visible light exposure were registered every 10 min. Approximately 600 commercial wines, bottled in flint and colored glass, were used. The colorimetric changes of the wines were registered and the light-strike fault was evaluated.

Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate

Precocity for fruit ripening is a genetically determined characteristic that is highly variable from one cultivar to another. In traditional wine-growing regions of Europe, growers have used this property to adapt the vines to local climatic conditions in order to maximize terroir expression

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.