Terroir 1996 banner
IVES 9 IVES Conference Series 9 Water status, nitrogen status and leaf area/ crop ratio effect on aromatic potential of vitis viniferaberries : example of Sauvignon blanc

Water status, nitrogen status and leaf area/ crop ratio effect on aromatic potential of vitis viniferaberries : example of Sauvignon blanc

Abstract

[English version below]

Les effets de l’état hydrique et de l’alimentation en azote sur le potentiel aromatique des raisins de Sauvignon blanc ont été mesurés sur des vignobles du Bordelais. Les déficits hydriques ont été caractérisés par le potentiel tige déterminé en milieu de journée ΨTmin)­. L’alimentation en azote a été étudiée à partir d’une zone carencée en azote. Une part de cette zone a été supplémentée avec de l’azote minéral. La teneur en précurseurs cystéinylés des raisins varie avec l’état hydrique de la vigne. Comparés à une alimentation en eau non limitative, les déficits hydriques modérés exercent une influence positive sur la teneur en précurseurs cystéinylés des raisins. La correction de la carence en azote a entraîné une forte augmentation des teneurs en précurseurs cystéinylés et en glutathion dans les baies. Inversement, cet apport d’azote a induit une diminution de la teneur en composés phénoliques Un rapport surface foliaire sur rendement élevé exerce une influence positive sur la teneur en précurseurs cystéinylés des baies.

Water status and nitrogen status influence on berries aromatic potential of Vitis vinifera L. cv. Sauvignon blanc have been surveyed in Bordeaux vineyard. Vine water deficit have been measured with the determination of midday stem water potential. Nitrogen status have been surveyed on the basis of deficient vines. Sorne of the vines have been fertilized with mineral nitrogen. S-cysteine conjugates, precursors of the volatile thiols have been determined. Berries precursors content is under the dependence on vine water status. Moderate water deficits have a positive effect on the berries precursors content. The Correction of the nitrogen deficiency provoked a strong increase of berries precursors and glutathion content, whereas the phenolic content decreased. A high leaf area / crop balance has played a positive influence on the berries precursors content.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Xavier CHONÉ (1,2), Valérie LAVIGNE-CRUEGE (1), Virginie MOINE-LEDOUX (1), Philippe CHÉRY (2), Takatoshi TOMINAGA (1), Denis DUBOURDIEU (1)

(1) Faculté d’Oenologie de Bordeaux, Université Bordeaux 2 Victor Ségalen, 351 Crs de la Libération, 33405 Talence Cedex, France
(2) ENITA de Bordeaux, 1 Crs du Général de Gaulle, 33175 Gradignan Cedex, France

Keywords

terroir, vigne, déficit hydrique, potentiel tige, surface foliaire, alimentation en azote, fertilisation, raisins, arômes, précurseurs cystéinylés, thiols, composés réducteurs, glutathion, composés phénoliques.
terroir, vine water deficit, stem water potential, leaf area, nitrogen status, fertilization, varietal aroma, precursors of the volatil thiols, reductive compound, berry glutathion and phenolic content

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

The objective of this study was to develop a methodology capable of modeling the effect of viticultural climate on wine sensory characteristics.

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.