Terroir 1996 banner
IVES 9 IVES Conference Series 9 Extension to the Saumurois-Touraine area of an Anjou-originated method for the characterisation of the viticultural terroirs. (Loire Valley, France)

Extension to the Saumurois-Touraine area of an Anjou-originated method for the characterisation of the viticultural terroirs. (Loire Valley, France)

Abstract

[English version below]

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation. Le modèle concerne des terrains issus principalement de roches mères métamorphiques et éruptives du Massif Armoricain. Cet outil de caractérisation des terroirs viticoles nécessite d’être adapté lorsqu’il s’agit d’ensembles géologiques très différents, en particulier sur sols d’apport et de roches mères tendres et poreuses du Bassin Parisien. Une meilleure compréhension de la réserve hydrique des sols apparaît être un critère important de l’interaction entre le milieu et la plante. Afin de mener à bien cette expérimentation, un réseau de parcelles d’étude a été mis en place sur cinq appellations d’origine contrôlée de la moyenne Vallée de la Loire.

In Anjou, a method for the characterisation of the viticultural terroirs has been developed. It uses a terrain model based on the depth of the soil and its clay content. The model applies to soils derived from metamorphic and igneous bed-rocks belonging to the Armorican Range. This tool for terroir characterisation needs to be adapted to different geologic systems, in particular to soils resting on soft and porous sedimentary bed-rocks belonging to the Parisian Basin. A better understanding of the water supply regime seems to be an important criteria of the interaction between the environment and the vine. To achieve this goal, a multisite network was established on five Appellations of Controlled Origin (A.O.C.) in the Mid-Loire valley.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Nicolas BOTTOIS (1), Elisabeth BESNARD (2), Etienne GOULET (2), Dominique RIOUX (2), Sébastien CESBRON (2), Adélaïde PALLUAU (2), Gérard BARBEAU (1)

(1) Unit Vigne et Vin- Centre INRA d’Angers. 42 rue Georges Morel; BP 57; 49071 Beaucouz Cedex
(2) Cellule Terroirs Viticoles – Chambre R gionale d’ Agriculture des Pays de la Loire

Keywords

terroirs viticoles, méthode d’étude, extension
viticultural terroirs, studying method, extension

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

Wine tannins: What place for grape seed?

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability.