Terroir 1996 banner
IVES 9 IVES Conference Series 9 Comportement phénologique et végétatif de la cv “Italia” en rapport an climat dans les deux zones typiques de viticulture de table en Sicile

Comportement phénologique et végétatif de la cv “Italia” en rapport an climat dans les deux zones typiques de viticulture de table en Sicile

Abstract

Le travail a le but de contribuer à faire connaître l’influence du milieu, en particulier le climat, sur l’expression génétique de la variété Italia en Sicile.
L’etude a étè effectué durant six années, du 1992 au 1997, à Canicattì et à Mazzarrone, les deux zones de viticulture de table sicilienne. Ont été choisis endroits différents pour altitude, distance de la mer, caractéristiques de sol e de climat, cinq à Canicattì et quatre à Mazzarrone.
Pendant toutes les années le mileu des vignobles de Mazzarrone a montré la caractéristique d’avoir hivers plus doux à comparaison du milieu de Canicattì. Le débourrement a été toujours plus tardif à Canicattì. Dans tous les vignobles la précocité de débourrement est suivie par la précocité de floraison et de maturation. Dans tous les ans la maturation a été plus tardive à Canicattì à comparaison de Mazzarrone. Il y a corrélation entré l’époque de débourrement et le date de maturation. Le cycle végétatif a la même durée dans les deux zones (à peu près 141 jours). Les corrélations entre les paramètres climatiques et les phases végétatives ont démontré un effet significatif de la température du sol. La température du sol est corrélée à la température maximale de l’air. On a eu niveaux plus élevés de fertilité des bourgeons et poids moyen de la baie plus bas à Canicattì. Dans les deux zones le poids moyen plus bas de la baie a été relevé dans les milieux plus précoces.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

M.G. Barbagallo (1), D. Cartabellotta (2), R. Di Lorenzo (1) and I. Sottile (1)

(1) Istituto di Coltivazioni Arboree – Università di Palermo
(2) Assessorato Agricoltura e Foreste – Servizio Agrometeorologico Siciliano

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

In sparkling winemaking several yeasts can be used to perform the primary alcoholic fermentation that leads to the elaboration of the base wine. However, only a few Saccharomyces cerevisiae yeast strains are regularly used for the secondary in-bottle alcoholic fermentation 1. Recently, advances in yeast development programs have resulted in new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavours and aromas 2. In this work, sparkling wines produced using interspecific yeast hybrids for the secondary in-bottle alcoholic fermentation have been chemically and sensorially characterized.METHODS: Three commercial English base wines have been prepared for secondary in-bottle alcoholic fermentation with different yeast strains, including two commercial and several novel interspecific hybrids derived from Saccharomyces species not traditionally used in sparkling winemaking. After 12 months of lees ageing, the 14 wines produced were analysed for their chemical and macromolecular composition 3,4, phenolic profile 5, foaming and viscosity properties [6]. The analytical data were supplemented with a sensory analysis.

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.

Benefits and risks of the utilization of grape pomace as organic fertilizers

Rhineland-Palatinate is Germany’s largest wine growing region. The recently launched collaborative project in the frame of the ‘Carl-Zeiss-Stiftungs-Kooperationsfonds für Nachhaltigkeitsforschung’ focusses on the risk-benefit assessment of the use of grape pomace (GP) from the region ‘Pfalz’ in Rhineland-Palatinate as a natural fertilizer

Reduced berry skin epi-cuticular wax and cutin accumulation associates with a genomic deletion and increased polyphenols extractability in a clone of Tempranillo Tinto 

Tempranillo Tinto (TT) is the third-most planted red wine variety in the world, and it is mostly grown in the Iberian Peninsula. Spontaneous somatic variation appearing during vegetative propagation can be exploited to improve elite varieties as Tempranillo Tinto, including the selection of new phenotypes enhancing berry quality. We described previously that a somatic variant of TT with darker fruit color, the clone VN21, exhibits increased extractability of polyphenols during the winemaking process. To unravel the molecular mechanism underlying this phenomenon, we performed whole-genome resequencing to compare VN21 to other TT clones, revealing a 10 Mb deletion in chromosome 11 that likely affected only the L1 meristem cell layer of VN21 and tissues derived from it, such as external cell layers of berry skin.