Terroir 1996 banner
IVES 9 IVES Conference Series 9 Comportement phénologique et végétatif de la cv “Italia” en rapport an climat dans les deux zones typiques de viticulture de table en Sicile

Comportement phénologique et végétatif de la cv “Italia” en rapport an climat dans les deux zones typiques de viticulture de table en Sicile

Abstract

Le travail a le but de contribuer à faire connaître l’influence du milieu, en particulier le climat, sur l’expression génétique de la variété Italia en Sicile.
L’etude a étè effectué durant six années, du 1992 au 1997, à Canicattì et à Mazzarrone, les deux zones de viticulture de table sicilienne. Ont été choisis endroits différents pour altitude, distance de la mer, caractéristiques de sol e de climat, cinq à Canicattì et quatre à Mazzarrone.
Pendant toutes les années le mileu des vignobles de Mazzarrone a montré la caractéristique d’avoir hivers plus doux à comparaison du milieu de Canicattì. Le débourrement a été toujours plus tardif à Canicattì. Dans tous les vignobles la précocité de débourrement est suivie par la précocité de floraison et de maturation. Dans tous les ans la maturation a été plus tardive à Canicattì à comparaison de Mazzarrone. Il y a corrélation entré l’époque de débourrement et le date de maturation. Le cycle végétatif a la même durée dans les deux zones (à peu près 141 jours). Les corrélations entre les paramètres climatiques et les phases végétatives ont démontré un effet significatif de la température du sol. La température du sol est corrélée à la température maximale de l’air. On a eu niveaux plus élevés de fertilité des bourgeons et poids moyen de la baie plus bas à Canicattì. Dans les deux zones le poids moyen plus bas de la baie a été relevé dans les milieux plus précoces.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

M.G. Barbagallo (1), D. Cartabellotta (2), R. Di Lorenzo (1) and I. Sottile (1)

(1) Istituto di Coltivazioni Arboree – Università di Palermo
(2) Assessorato Agricoltura e Foreste – Servizio Agrometeorologico Siciliano

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

The analysis of structurally diverse proanthocyanidins in grapes and wine is challenging. Comprehensive two-dimensional liquid chromatography (LC×LC) and ion mobility spectrometry-mass spectrometry (IMS-MS) are increasingly used to address the challenges associated with the analysis of highly complex samples such as wine and grapes

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

Environmental and yearly influences on four Sicilian grape clones under climate change challenges

By the end of this century, up to 90% of traditional viticulture regions in the Mediterranean, including Sicily, are projected to face extinction due to escalating climate challenges such as severe droughts, heatwaves, and unseasonal rains.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.