Terroir 1996 banner
IVES 9 IVES Conference Series 9 Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

Abstract

The effects of temperature on cv Piedirosso, indigenous of the Campania region (South of Italy), were tested in order to study its possible influence on grapevine and to discover how to optimize the qualitative expression of the cultivar. Relationships between evolution of the main must components, berry weight, and heat requirement of the cv Piedirosso were studied. The cv Piedirosso showed itself to be suitable to the area tested. We evidenced a reasonable agreement of the model of Amerine and Winkler’s estimation as to the thermal needs of cv Piedirosso. The heat requirement of the cultivar was determined in 1750-1850 degrees/day (DD) to obtain a sugar content of 21-22 °Brix, a pH of 3.10-3.20 and a titratable acidity of 8-9 g/l; to obtain a higher sugar content of musts (23-24 °Brix, pH of 3.2-3.3, titratable acidity of 8-9 g/l) the thermal needs is 1800-1900 DD.

 

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Scaglione G., Pasquarella C., Santitoro A., Peluso C., Forlani M.

Dipartimento d’Arboricoltura, Botanica e Patologia Vegetale
Università di Napoli “Federico II”. 80055-Portici (Na)

Contact the author

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Viticultura protegida: uso de mallas sombreadoras fotoselectivas como una herramienta para enfrentar la crisis climática en uva de mesa en el norte de Chile

The production of table grapes in Chile is of great importance, being one of the main established fruit crops with over 43,000 hectares distributed across a diverse climate range, from the southern limit of the Atacama desert to the mediterranean zone. Chile is also one of the leading exporters of table grapes. producers must confront the challenges posed by the climate crisis, such as decreased rainfall, increased heatwaves, and extreme temperature events during the growing season, mainly associated with desertification in northern Chile (Atacama and Coquimbo regions).

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).