Terroir 1996 banner
IVES 9 IVES Conference Series 9 Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

Abstract

The effects of temperature on cv Piedirosso, indigenous of the Campania region (South of Italy), were tested in order to study its possible influence on grapevine and to discover how to optimize the qualitative expression of the cultivar. Relationships between evolution of the main must components, berry weight, and heat requirement of the cv Piedirosso were studied. The cv Piedirosso showed itself to be suitable to the area tested. We evidenced a reasonable agreement of the model of Amerine and Winkler’s estimation as to the thermal needs of cv Piedirosso. The heat requirement of the cultivar was determined in 1750-1850 degrees/day (DD) to obtain a sugar content of 21-22 °Brix, a pH of 3.10-3.20 and a titratable acidity of 8-9 g/l; to obtain a higher sugar content of musts (23-24 °Brix, pH of 3.2-3.3, titratable acidity of 8-9 g/l) the thermal needs is 1800-1900 DD.

 

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Scaglione G., Pasquarella C., Santitoro A., Peluso C., Forlani M.

Dipartimento d’Arboricoltura, Botanica e Patologia Vegetale
Università di Napoli “Federico II”. 80055-Portici (Na)

Contact the author

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process.