Terroir 1996 banner
IVES 9 IVES Conference Series 9 Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

Abstract

The effects of temperature on cv Piedirosso, indigenous of the Campania region (South of Italy), were tested in order to study its possible influence on grapevine and to discover how to optimize the qualitative expression of the cultivar. Relationships between evolution of the main must components, berry weight, and heat requirement of the cv Piedirosso were studied. The cv Piedirosso showed itself to be suitable to the area tested. We evidenced a reasonable agreement of the model of Amerine and Winkler’s estimation as to the thermal needs of cv Piedirosso. The heat requirement of the cultivar was determined in 1750-1850 degrees/day (DD) to obtain a sugar content of 21-22 °Brix, a pH of 3.10-3.20 and a titratable acidity of 8-9 g/l; to obtain a higher sugar content of musts (23-24 °Brix, pH of 3.2-3.3, titratable acidity of 8-9 g/l) the thermal needs is 1800-1900 DD.

 

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Scaglione G., Pasquarella C., Santitoro A., Peluso C., Forlani M.

Dipartimento d’Arboricoltura, Botanica e Patologia Vegetale
Università di Napoli “Federico II”. 80055-Portici (Na)

Contact the author

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Dialing in remote measurements of grapevine water stress by incorporating whole plant physiological responses

Context and purpose of the study. Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress.

Hyperspectral imaging for precision viticulture

Precision viticulture aims to optimize vineyard management by monitoring and responding to variability within vine plots. this work presents a comprehensive study on the application of hyperspectral imaging (hsi) technology for monitoring purposes in precision viticulture. authors explore the deployment of hsi sensors on various platforms including laboratory settings, terrestrial vehicles, and unmanned aerial vehicles, facilitating the collection of high-resolution data across extensive vineyard areas.