Terroir 1996 banner
IVES 9 IVES Conference Series 9 Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

Abstract

The effects of temperature on cv Piedirosso, indigenous of the Campania region (South of Italy), were tested in order to study its possible influence on grapevine and to discover how to optimize the qualitative expression of the cultivar. Relationships between evolution of the main must components, berry weight, and heat requirement of the cv Piedirosso were studied. The cv Piedirosso showed itself to be suitable to the area tested. We evidenced a reasonable agreement of the model of Amerine and Winkler’s estimation as to the thermal needs of cv Piedirosso. The heat requirement of the cultivar was determined in 1750-1850 degrees/day (DD) to obtain a sugar content of 21-22 °Brix, a pH of 3.10-3.20 and a titratable acidity of 8-9 g/l; to obtain a higher sugar content of musts (23-24 °Brix, pH of 3.2-3.3, titratable acidity of 8-9 g/l) the thermal needs is 1800-1900 DD.

 

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Scaglione G., Pasquarella C., Santitoro A., Peluso C., Forlani M.

Dipartimento d’Arboricoltura, Botanica e Patologia Vegetale
Università di Napoli “Federico II”. 80055-Portici (Na)

Contact the author

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Spatial characterization of land use in the viticultural Maipo Valley (Chile), using aster image digital processing

L’entreprise viticole Concha y Toro S.A. gère environ 600 ha de vignes dans la Vallée du Maipo (A.O. Valle del Maipo). L’objectif est celui de caractériser spatialement ces vignobles et leur occupation du sol environnante. Le choix s’est porté vers la démarche de zonage viticole par l’analyse spatiale, utilisant des traitements d’images satellitaires afin d’avoir une vision synoptique de la zone à moindres coûts et délais. Un système d’informations géographiques (SIG) est construit à partir des données suivantes : cartes topographiques, géologique, fond cadastral numérique, images satellitaires. Un modèle numérique de terrain est par ailleurs construit à une résolution de 25 m à partir des cartes topographiques.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

Counting grape bunches using deep learning under different fruit and leaf occlusion conditions

Yield estimation is very important for the wine industry since provides useful information for vineyard and winery management. The early yield estimation of the grapevine provides information to winegrowers in making management decisions to achieve a better quantity and quality of grapes. In general, yield forecasts are based on destructive sampling of bunches and manual counting of berries per bunch and bunches per vine.