Terroir 1996 banner
IVES 9 IVES Conference Series 9 Delineation significance in viticultural zoning: examples in the Southern Côtes-du-Rhône

Delineation significance in viticultural zoning: examples in the Southern Côtes-du-Rhône

Abstract

In order for a spatialized gestion of wine-producing areas, delineation of viticultural zones is needed. Viticultural zoning according to qualitative expression of varieties is a great concern for the wine professionals in the Southern Côtes-du­Rhône (lat. 43°50′-44°30′ North, long. 4°30′-5°10’East of Greenwich meridian). In this study, viticultural terroirs are regarded as parts of agricultural land, where harvest expression is likely to be homogeneous. Geographic information analysis, based on soil landscape characterization, is aimed at terroir spatial distribution modelling. Geographic data available are : field observations ; aerial photographs ; topographic, geological, and soil maps; Digital Elevation Model; satellite images. Terroir determination separately considers two objects: the soil landscape unit and the viticultural plot; both are described by about twenty environmental variables; 3 additional variables describe plots only. Multivariate clustering obtained from several classifications calculated on these variables, determines terroirs at two different scale and resolution levels: «global», from 55 soil landscape units; «local», from 91 plots. The terroirs interpolated from plot clusters are characterized by black Grenache harvest data measured over the course of 17 vintages (1982-1998): their harvest composition differ. Such locally defined terroirs are compared with the globally defined terroirs. Validity of global viticultural terroirs is discussed, in relation to variables influence and plot localization relevance.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Emmanuelle VAUDOUR

Syndicat des Vignerons des Côtes-du-Rhône Maison des Vins – 6, rue des Trois Faucons 84000 Avignon France
Institut National Agronomique Paris-Grignon UFR AGER/DMOS – Centre de Grignon BP0 1 78850 Thiverval-Grignon France

Contact the author

Keywords

 délimitation pédopaysages, terroirs niveau spatial d’organisation SIG constitution fréquentielle des raisins
delineation soil landscapes terroirs scale and resolution level GIS harvest composition frequency

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

A.O.C. huile d’olive de Nyons et olives noires de Nyons

A.O.C. huile d’olive de Nyons et olives noires de Nyons

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

Aceto balsamico di Modena IGP (ABM) is an Italian worldwide appreciated PGI (Protected Geographical Indication) vinegar,  obtained from cooked and/or concentrated grape must (at least 20% of the volume), with the addition of at least 10% of wine vinegar and a maximum 2% of caramel for color stability (EU Reg. 583/ 2009).

Taking advantage of difficulties. Variable rate application based on canopy maps to achieve a sustainable crop

Aim: The aim of this work was to evaluate the use of Variable Rate Application technologies based on prescription maps in commercial vineyards with large intra-parcel variability to achieve a more sustainable distribution of Plant Protection Products (PPP)

Crop water stress index as a tool to estimate vine water status

Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.