Terroir 1996 banner
IVES 9 IVES Conference Series 9 Delineation significance in viticultural zoning: examples in the Southern Côtes-du-Rhône

Delineation significance in viticultural zoning: examples in the Southern Côtes-du-Rhône

Abstract

In order for a spatialized gestion of wine-producing areas, delineation of viticultural zones is needed. Viticultural zoning according to qualitative expression of varieties is a great concern for the wine professionals in the Southern Côtes-du­Rhône (lat. 43°50′-44°30′ North, long. 4°30′-5°10’East of Greenwich meridian). In this study, viticultural terroirs are regarded as parts of agricultural land, where harvest expression is likely to be homogeneous. Geographic information analysis, based on soil landscape characterization, is aimed at terroir spatial distribution modelling. Geographic data available are : field observations ; aerial photographs ; topographic, geological, and soil maps; Digital Elevation Model; satellite images. Terroir determination separately considers two objects: the soil landscape unit and the viticultural plot; both are described by about twenty environmental variables; 3 additional variables describe plots only. Multivariate clustering obtained from several classifications calculated on these variables, determines terroirs at two different scale and resolution levels: «global», from 55 soil landscape units; «local», from 91 plots. The terroirs interpolated from plot clusters are characterized by black Grenache harvest data measured over the course of 17 vintages (1982-1998): their harvest composition differ. Such locally defined terroirs are compared with the globally defined terroirs. Validity of global viticultural terroirs is discussed, in relation to variables influence and plot localization relevance.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Emmanuelle VAUDOUR

Syndicat des Vignerons des Côtes-du-Rhône Maison des Vins – 6, rue des Trois Faucons 84000 Avignon France
Institut National Agronomique Paris-Grignon UFR AGER/DMOS – Centre de Grignon BP0 1 78850 Thiverval-Grignon France

Contact the author

Keywords

 délimitation pédopaysages, terroirs niveau spatial d’organisation SIG constitution fréquentielle des raisins
delineation soil landscapes terroirs scale and resolution level GIS harvest composition frequency

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

The Columbia Valley American Viticultural Area (AVA) of the Pacific Northwest, USA is the world’s largest officially recognized viticultural area with basalt bedrock.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).