Terroir 1996 banner
IVES 9 IVES Conference Series 9 Delineation significance in viticultural zoning: examples in the Southern Côtes-du-Rhône

Delineation significance in viticultural zoning: examples in the Southern Côtes-du-Rhône

Abstract

In order for a spatialized gestion of wine-producing areas, delineation of viticultural zones is needed. Viticultural zoning according to qualitative expression of varieties is a great concern for the wine professionals in the Southern Côtes-du­Rhône (lat. 43°50′-44°30′ North, long. 4°30′-5°10’East of Greenwich meridian). In this study, viticultural terroirs are regarded as parts of agricultural land, where harvest expression is likely to be homogeneous. Geographic information analysis, based on soil landscape characterization, is aimed at terroir spatial distribution modelling. Geographic data available are : field observations ; aerial photographs ; topographic, geological, and soil maps; Digital Elevation Model; satellite images. Terroir determination separately considers two objects: the soil landscape unit and the viticultural plot; both are described by about twenty environmental variables; 3 additional variables describe plots only. Multivariate clustering obtained from several classifications calculated on these variables, determines terroirs at two different scale and resolution levels: «global», from 55 soil landscape units; «local», from 91 plots. The terroirs interpolated from plot clusters are characterized by black Grenache harvest data measured over the course of 17 vintages (1982-1998): their harvest composition differ. Such locally defined terroirs are compared with the globally defined terroirs. Validity of global viticultural terroirs is discussed, in relation to variables influence and plot localization relevance.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Emmanuelle VAUDOUR

Syndicat des Vignerons des Côtes-du-Rhône Maison des Vins – 6, rue des Trois Faucons 84000 Avignon France
Institut National Agronomique Paris-Grignon UFR AGER/DMOS – Centre de Grignon BP0 1 78850 Thiverval-Grignon France

Contact the author

Keywords

 délimitation pédopaysages, terroirs niveau spatial d’organisation SIG constitution fréquentielle des raisins
delineation soil landscapes terroirs scale and resolution level GIS harvest composition frequency

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Flanan-3-ol compositional changes in red grape berries (Vitis vinifera L. cv Cabernet franc) from two terroirs of the Loire Valley (France)

La quantité et la qualité des flavonoïdes sont des éléments importants de la qualité de la baie. En particulier, les tannins contribuent de manière essentielle aux propriétés spécifiques des vins rouges telles que la couleur, l’astringence et l’amertume. Cependant, leur synthèse et leurs propriétés sont encore mal connues. Ainsi, la

Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Chardonnay is the world’s most planted white grape variety and has met a great commercial success for decades.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.