Terroir 1996 banner
IVES 9 IVES Conference Series 9 Delineation significance in viticultural zoning: examples in the Southern Côtes-du-Rhône

Delineation significance in viticultural zoning: examples in the Southern Côtes-du-Rhône

Abstract

In order for a spatialized gestion of wine-producing areas, delineation of viticultural zones is needed. Viticultural zoning according to qualitative expression of varieties is a great concern for the wine professionals in the Southern Côtes-du­Rhône (lat. 43°50′-44°30′ North, long. 4°30′-5°10’East of Greenwich meridian). In this study, viticultural terroirs are regarded as parts of agricultural land, where harvest expression is likely to be homogeneous. Geographic information analysis, based on soil landscape characterization, is aimed at terroir spatial distribution modelling. Geographic data available are : field observations ; aerial photographs ; topographic, geological, and soil maps; Digital Elevation Model; satellite images. Terroir determination separately considers two objects: the soil landscape unit and the viticultural plot; both are described by about twenty environmental variables; 3 additional variables describe plots only. Multivariate clustering obtained from several classifications calculated on these variables, determines terroirs at two different scale and resolution levels: «global», from 55 soil landscape units; «local», from 91 plots. The terroirs interpolated from plot clusters are characterized by black Grenache harvest data measured over the course of 17 vintages (1982-1998): their harvest composition differ. Such locally defined terroirs are compared with the globally defined terroirs. Validity of global viticultural terroirs is discussed, in relation to variables influence and plot localization relevance.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Emmanuelle VAUDOUR

Syndicat des Vignerons des Côtes-du-Rhône Maison des Vins – 6, rue des Trois Faucons 84000 Avignon France
Institut National Agronomique Paris-Grignon UFR AGER/DMOS – Centre de Grignon BP0 1 78850 Thiverval-Grignon France

Contact the author

Keywords

 délimitation pédopaysages, terroirs niveau spatial d’organisation SIG constitution fréquentielle des raisins
delineation soil landscapes terroirs scale and resolution level GIS harvest composition frequency

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Grape texture characteristics are linked to one major qtl

Berry texture and berry skin mechanical properties have high agronomic importance, related to quality and marketing requirements of wine, table and raisin grapes.

Influence of planting stock and training strategy on the development and productivity of Pinot noir grapevines

For cool windy climates and/or lower vigor site situations delays in vine development during vine establishment can result in a greater number of growing seasons to achieve full yield potential. Plant material and training strategies utilized are critical factors in promoting vine development and production that is appropriate to the site conditions. The objective of this study was to evaluate nursery planting stock and training strategies for their potential to achieved advanced vine development and yield.

Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Phosphonic acid and especially potassium dihydrogen phosphonate are widely used to restrain the ubiquitous pressure of grapevine downy mildew in viticulture. Nevertheless, phosphonic acid and its derivatives have been banned in organic viticulture in October 2013, because they have been classified as plant protection products since then.

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis.

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.