Terroir 1996 banner
IVES 9 IVES Conference Series 9 Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

Abstract

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC. The analytical datas were statisticaly worked out by Anova, Ancova, principal components analysis ACP and linear factorial discriminant analysis. A significati­ve differentiation in the phenolic composition of 6 vine-varieties have been found, so that an analytical key of separation has been found too. But also the 4 zones gave useful indication on the different behaviour of same vine-varieties (Sangiovese, Foglia Tonda, Nero d’Avola) in the different zones, so a positive interaction between the vine-variety and the environment was supposed. The other vine-varieties didn’t show phenolic composition significatively different in the 4 zones.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

PIRACCI A., BUCELLI P., BOSSO A. (1), GIANNETTI F., FAVIERE V.

lstituto Sperimentale per l’Enologia – S.o.p. di Gaiole in Chianti (SI), 1, via di Vertine
(1) lstituto sperimentale per l’Enologia – S.c. di Tecnologia enologica, Asti, 14, Via P. Micca

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Veraison as determinant for wine quality and its potential for climate adapted breeding

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

Winemaking techniques and wine tasting methods at the end of the Middle Ages

Les pratiques de vinification et de dégustation du vin sont souvent perçues, à travers un discours marketing très puissant, sous l’angle d’une tradition millénaire qui perdure depuis le Moyen Âge. En Bourgogne, il est courant de rattacher les racines de ces pratiques à l’activité des institutions ecclésiastiques qui possédaient d

Variety “Rebula” (Vitis vinifera L.) determines the terroir Goriška brda “Collio” in Slovenia

A «terroir» is a group of vineyards from the same region, belonging to a specific appellation, and sharing the same type of soil, weather conditions, grapes and wine making savoir-faire, which contribute its specific personality to the wine. White wine variety «Rebula» or «Ribolla gialla» is a local and traditional variety, which is mentioned already in XIII. century like variety for tax paying and merchandise.

Optimized grape seed protein extraction for wine fining

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.