Terroir 1996 banner
IVES 9 IVES Conference Series 9 Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

Abstract

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC. The analytical datas were statisticaly worked out by Anova, Ancova, principal components analysis ACP and linear factorial discriminant analysis. A significati­ve differentiation in the phenolic composition of 6 vine-varieties have been found, so that an analytical key of separation has been found too. But also the 4 zones gave useful indication on the different behaviour of same vine-varieties (Sangiovese, Foglia Tonda, Nero d’Avola) in the different zones, so a positive interaction between the vine-variety and the environment was supposed. The other vine-varieties didn’t show phenolic composition significatively different in the 4 zones.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

PIRACCI A., BUCELLI P., BOSSO A. (1), GIANNETTI F., FAVIERE V.

lstituto Sperimentale per l’Enologia – S.o.p. di Gaiole in Chianti (SI), 1, via di Vertine
(1) lstituto sperimentale per l’Enologia – S.c. di Tecnologia enologica, Asti, 14, Via P. Micca

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Alternative methods to evaluate the pinking susceptibility of white wines: derivative spectroscopy and ciel*a*b* colour analysis

Pinking describes the appearance of a salmon-red blush in white bottled wines produced exclusively from white grape varieties. It is understood as an undesirable chromatic phenomenon by both wine consumers and the industry. Nowadays, there are no treatments to fully reverse pinking once it occurs. Partial reversion has been shown after exposure of pinked wine to ultraviolet (UV) light.

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions

Etude préliminaire des influences pédoclimatiques sur les caractéristiques quali-quantitatives du cépage aglianico dans une zone de la province de benevento-ltalie

The need to classify the vineyards of an area according to the quality of its wines is not recent, but it is only in the last ten years that studies on the suitability of different areas for the cultivation of vineyard take on an integrated and interdisciplinary character (Boselli, 1991). The definition of the suitability of the environment is thus obtained by making the climatic, pedological, topographical and cultural information interact with the vegetative, productive and qualitative expression of the grape varieties.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.