Terroir 1996 banner
IVES 9 IVES Conference Series 9 Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

Abstract

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC. The analytical datas were statisticaly worked out by Anova, Ancova, principal components analysis ACP and linear factorial discriminant analysis. A significati­ve differentiation in the phenolic composition of 6 vine-varieties have been found, so that an analytical key of separation has been found too. But also the 4 zones gave useful indication on the different behaviour of same vine-varieties (Sangiovese, Foglia Tonda, Nero d’Avola) in the different zones, so a positive interaction between the vine-variety and the environment was supposed. The other vine-varieties didn’t show phenolic composition significatively different in the 4 zones.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

PIRACCI A., BUCELLI P., BOSSO A. (1), GIANNETTI F., FAVIERE V.

lstituto Sperimentale per l’Enologia – S.o.p. di Gaiole in Chianti (SI), 1, via di Vertine
(1) lstituto sperimentale per l’Enologia – S.c. di Tecnologia enologica, Asti, 14, Via P. Micca

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

Viticulture and grapevine breeding programs have to face and adapt to the rapidly changing growing conditions due to the ongoing climate change, the scarcity of resources and the demand for sustainability within the whole value chain of wine production. In times of highly effective and cost-efficient genotyping technologies routinely applied in plant research and breeding, the need for comparable high-speed and high-resolution phenotyping tools has increased substantially. The disciplines of grapevine research, breeding and precision viticulture picked up this demand – mostly independent from each other – by the development, validation and establishment of different sensor technologies in order to extend management strategies or to transform labor-intensive and expensive phenotyping.

Novel table grape varieties as “ready-to-eat” products

Consumers are increasingly requesting ready-to-eat products, which are time-saving and convenient. Offering ready-to-eat fruits and vegetables represents a quick and easy way for any consumer to add healthy products to their diet. In this study, we evaluated the aptitude of several table grape varieties to be included in the processing and packaging lines of ready-to-eat products. The following work was based on the characterization of genetic materials and varietal innovation.

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are
important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly
focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.