Terroir 1996 banner
IVES 9 IVES Conference Series 9 Évolution de la surmaturation du cépage Chenin dans différents terroirs des Coteaux du Layon en relation avec les variables agroviticoles

Évolution de la surmaturation du cépage Chenin dans différents terroirs des Coteaux du Layon en relation avec les variables agroviticoles

Abstract

The French “Coteaux du Layon” Appellation of Origin has built its Jarne on the production of sweet white wines. A network of experimental plots, based on the “terroir” concept, was established in 1990; it allows for the follow-up of the overripening behaviour of the grapes in relation with the agroviticultural parameters. The studied terroirs show a distinctive behaviour; they can be classified in two groups. One favours a precocious and important development of Botrytis cinerea, which can give way to the noble rot with more or less intensity according to the vintage; sugar concentration never reaches high levels and deviations towards the grey rot and other fungal and bacterial infections are frequent. On the other the overripening process leads to a late and less important settlement of Botrytis which moves towards the noble rot form, with passerillage; their relative proportions vary according to the type of terroir and the vintage. On the first terroirs, the Chenin variety has a rather Late cycle and an important vigour. On the latter, the plant cycle is always more precocious and the vigour less important. These parameters are related to the degree of evolution of soils on a given geological substratum and the abundance and regularity of water supply. The differences within each group can be explained by local climatic variations such as exposition, sunshine and the frequency of morning mists.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

G. BARBEAU, CLAIRE MAITE, HÉLÈNE SINAEVE, C. ASSELIN, R. MORLAT

Unité de Recherches sur la Vigne et le Vin (URVV), Centre INRA d’Angers
42, rue Georges Morel, 49071 Beaucouzé Cedex

Contact the author

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Compactness is a complex trait of V. vinifera L. and is defined ultimately by the portion of free space within the bunch which is not occupied by the berries. A high degree of compactness results in poor ventilation and consequently a higher susceptibility to fungal diseases, diminishing the quality of the fruit. The easiness to conceptualize the trait and its importance arguably contrasts with the difficulty to measure and quantify it. However, recent technical advancements have allowed to study this attribute more accurately over the last decade. Our main objective was to explore the underlying genetics determining bunch compactness by applying updated phenotyping methods in a collection of V. vinifera L. cultivars with a wide genetic diversity.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

The Albariño route in Uruguay: A clonal selection process to produce quality wines

In recent years, Uruguay has embraced the Albariño grape variety (Vitis vinifera L.) as one of the most promising for commercial growth. Originally cultivated in Galicia and northern Portugal, Albariño has risen to prominence in the global wine market, driving strong demand and significantly increasing grape prices [1].

Heat-stress responses regulated via a MYB24-MYC2 complex

Throughout the growing season, grapevine frequently encounters environmental challenges associated with heat and light radiation stress, especially during the ripening stage, thereby constraining the yield and quality of berries. MYB24 has been previously proposed to control light responses during late fruit ripening stages, and it has been found to require the co-factor MYC2. We have generated transcriptomic data from grapevine leaves transiently co-transformed with MYB24 and MYC2. Differential expression analysis revealed 179 up-regulated genes (URGs). Considering tissue specificity, where MYB24 is specifically and highly expressed in flowers and late-ripening berries, the expression of these URGs was explored using a previously published Berry Development Atlas gathering berry development data of cv. ‘Pinot Noir’ and ‘Cabernet Sauvignon’ in different vintages.

Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Many of the world’s vineyard regions are located in regions of complex terrain, with the result there is significant local climate variation.