Terroir 1996 banner
IVES 9 IVES Conference Series 9 The developement of vineyard zonation and demarcation in South Africa

The developement of vineyard zonation and demarcation in South Africa

Abstract

[English version below]

L’histoire de viticulture de l’Afrique du Sud embrasse 340 ans, et a commencé, à la province du Cap, où les colonisateurs hollandais ont planté les premières vignes. L’arrivée des Huguenots français en 1688 a avancé, le développement. Les vins de Constantia deviennent renommés, et ainsi ils sont les premiers “vins d’origine” de l’Afrique du Sud. Pendant l’occupation britannique de la province du Cap en 1806, la viticulture a développé, davantage, dû à l’inaccessibilité, de l’Europe et ses vins pendant cette période. On a plant, la plupart des vignobles à la région côtière du sud-ouest, aux environs de la province du Cap, et aux vallées limitrophes. Ces régions sont toujours productrices principales de vin. Vers 1850, les exportations de vin étaient très limitées, dû à la détérioration de la qualité de vin. Ce fait a résulté du manque de contrôle d’origine et de qualité. L’industrie a reconnu ce problème, ce qui mène à la fondation d’un système de contrôle de Vin d’Origine en 1973. Des experts techniques font la démarcation des secteurs de vin, en employant quatre catégories. Ces sont: (1) Régions, (2) Districts, (3) Circonscriptions (‘Wards’), et (4) Domaines. Faute d’assez de traditions, d’expérience et des données expérimentales (contrasté avec les pays européens de viticulture), la philosophie sud-africaine de démarcation embrasse l’identification des unités de terrain naturel, en employant des données techniques qui sont disponibles.

The 340 year old history of viticulture in South Africa started with the first planting of vines by the Commander of the first Dutch settlers at the Cape. Further expansion was encouraged by succeeding Governors and also stimulated by the arrival of the French Huguenots in 1688. Constantia wines became internationally famous and thus were the first ‘wines of origin’ from South Africa. After the British occupation of the Cape in 1806, viticulture was further stimulated due to the inaccessibility of Europe and its wines to Britain at that stage. Vineyards were mainly established in the south-western coastal zone around the Cape and in adjacent Inland River valleys were irrigation water was available. These areas, characterized by a Mediterranean climate, are still the main wine producing regions today. Towards 1850, wine exports reached an ail time low because of the deterioration in wine quality, mainly as result of the absence of control over origin and quality. This problem was realized by the industry and resulted in a Wine of Origin Control system since 1973. Demarcation of existing vineyards was, and still is, done by technical experts, using four categories, viz. (1) Regions, based on broad geographical features and administrative boundaries; (2) Districts, based on geographical and macro climatic features; (3) Wards, essentially based on uniform soil, climatic and ecological patterns; and (4) Estates, based on the concept of singular ownership of vineyards and wine being produced on the estate. To demarcate Wards, land type maps are used. Land types are a concept unique to South Africa and are defined as a class of land over which the macro climate, the terrain form and soil pattern each displays a marked uniformity. Land types differ from each other in terms of macro climate, terrain form or soil pattern, or combinations of these natural factors. Lacking sufficient tradition, experience and experimental information, compared to the old word wine countries, the philosophy behind demarcation in South Africa is to identify natural terrain units, using available technical information, and then allowing such units to develop and demonstrate particular wine styles and character, rather than demanding proof of uniqueness before demarcation is done.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

D. SAAYMAN

Dept. Of Soil Science, University of Stellenbosch, P/Bag X1, Matieland, 7602, RSA

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms.

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

The smoking gun of climate change in wines

In this audio recording of the IVES science meeting 2022, Antonio Graca (Sogrape, Portugal) speaks about smoke taint and climate change. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Gambellara zoning: climate and soil effect on the aromatic fresh and dried grape composition and wine aroma

La région de production de la Gambellara et Recioto di Gambellara DOC (variété Garganega), tout en n’intéressant qu’une surface limitée, présente une certaine variabilité de milieu due à la morphologie du territoire (colline et plaine), à l’état actuel des sols et aux variations climatiques entre les différents sites. Pour les années 2001, 2002