Terroir 1996 banner
IVES 9 IVES Conference Series 9 The developement of vineyard zonation and demarcation in South Africa

The developement of vineyard zonation and demarcation in South Africa

Abstract

[English version below]

L’histoire de viticulture de l’Afrique du Sud embrasse 340 ans, et a commencé, à la province du Cap, où les colonisateurs hollandais ont planté les premières vignes. L’arrivée des Huguenots français en 1688 a avancé, le développement. Les vins de Constantia deviennent renommés, et ainsi ils sont les premiers “vins d’origine” de l’Afrique du Sud. Pendant l’occupation britannique de la province du Cap en 1806, la viticulture a développé, davantage, dû à l’inaccessibilité, de l’Europe et ses vins pendant cette période. On a plant, la plupart des vignobles à la région côtière du sud-ouest, aux environs de la province du Cap, et aux vallées limitrophes. Ces régions sont toujours productrices principales de vin. Vers 1850, les exportations de vin étaient très limitées, dû à la détérioration de la qualité de vin. Ce fait a résulté du manque de contrôle d’origine et de qualité. L’industrie a reconnu ce problème, ce qui mène à la fondation d’un système de contrôle de Vin d’Origine en 1973. Des experts techniques font la démarcation des secteurs de vin, en employant quatre catégories. Ces sont: (1) Régions, (2) Districts, (3) Circonscriptions (‘Wards’), et (4) Domaines. Faute d’assez de traditions, d’expérience et des données expérimentales (contrasté avec les pays européens de viticulture), la philosophie sud-africaine de démarcation embrasse l’identification des unités de terrain naturel, en employant des données techniques qui sont disponibles.

The 340 year old history of viticulture in South Africa started with the first planting of vines by the Commander of the first Dutch settlers at the Cape. Further expansion was encouraged by succeeding Governors and also stimulated by the arrival of the French Huguenots in 1688. Constantia wines became internationally famous and thus were the first ‘wines of origin’ from South Africa. After the British occupation of the Cape in 1806, viticulture was further stimulated due to the inaccessibility of Europe and its wines to Britain at that stage. Vineyards were mainly established in the south-western coastal zone around the Cape and in adjacent Inland River valleys were irrigation water was available. These areas, characterized by a Mediterranean climate, are still the main wine producing regions today. Towards 1850, wine exports reached an ail time low because of the deterioration in wine quality, mainly as result of the absence of control over origin and quality. This problem was realized by the industry and resulted in a Wine of Origin Control system since 1973. Demarcation of existing vineyards was, and still is, done by technical experts, using four categories, viz. (1) Regions, based on broad geographical features and administrative boundaries; (2) Districts, based on geographical and macro climatic features; (3) Wards, essentially based on uniform soil, climatic and ecological patterns; and (4) Estates, based on the concept of singular ownership of vineyards and wine being produced on the estate. To demarcate Wards, land type maps are used. Land types are a concept unique to South Africa and are defined as a class of land over which the macro climate, the terrain form and soil pattern each displays a marked uniformity. Land types differ from each other in terms of macro climate, terrain form or soil pattern, or combinations of these natural factors. Lacking sufficient tradition, experience and experimental information, compared to the old word wine countries, the philosophy behind demarcation in South Africa is to identify natural terrain units, using available technical information, and then allowing such units to develop and demonstrate particular wine styles and character, rather than demanding proof of uniqueness before demarcation is done.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

D. SAAYMAN

Dept. Of Soil Science, University of Stellenbosch, P/Bag X1, Matieland, 7602, RSA

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

The use of remote sensing in South-African terroir research

The diversity of soil types in the Western Cape of South Africa leads to high levels of within-vineyard variability. Multispectral remote sensing has received a lot of attention recently in the South-African wine industry in an attempt to identify and deal with this variability.

Impact of agrivoltaics on berry ripening: preliminary results for the white cv. Viosinho

Climate change poses significant challenges for viticulture, particularly in Mediterranean regions like Portugal, where extreme heat and drought conditions are becoming more frequent.

Consumer perception and preferences regarding grape varieties resilient to climate change

Innovative solutions have been developed for winemakers to adopt in their cultivation practices [1]. Two of the implementations addressed in this study are the use of strains adapted to arid climates (AAC) and the use of varieties resistant to fungal diseases (PIWIs).

Juvenile-to-adult vegetative phase transition in grapevine 

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge.