Terroir 1996 banner
IVES 9 IVES Conference Series 9 The developement of vineyard zonation and demarcation in South Africa

The developement of vineyard zonation and demarcation in South Africa

Abstract

[English version below]

L’histoire de viticulture de l’Afrique du Sud embrasse 340 ans, et a commencé, à la province du Cap, où les colonisateurs hollandais ont planté les premières vignes. L’arrivée des Huguenots français en 1688 a avancé, le développement. Les vins de Constantia deviennent renommés, et ainsi ils sont les premiers “vins d’origine” de l’Afrique du Sud. Pendant l’occupation britannique de la province du Cap en 1806, la viticulture a développé, davantage, dû à l’inaccessibilité, de l’Europe et ses vins pendant cette période. On a plant, la plupart des vignobles à la région côtière du sud-ouest, aux environs de la province du Cap, et aux vallées limitrophes. Ces régions sont toujours productrices principales de vin. Vers 1850, les exportations de vin étaient très limitées, dû à la détérioration de la qualité de vin. Ce fait a résulté du manque de contrôle d’origine et de qualité. L’industrie a reconnu ce problème, ce qui mène à la fondation d’un système de contrôle de Vin d’Origine en 1973. Des experts techniques font la démarcation des secteurs de vin, en employant quatre catégories. Ces sont: (1) Régions, (2) Districts, (3) Circonscriptions (‘Wards’), et (4) Domaines. Faute d’assez de traditions, d’expérience et des données expérimentales (contrasté avec les pays européens de viticulture), la philosophie sud-africaine de démarcation embrasse l’identification des unités de terrain naturel, en employant des données techniques qui sont disponibles.

The 340 year old history of viticulture in South Africa started with the first planting of vines by the Commander of the first Dutch settlers at the Cape. Further expansion was encouraged by succeeding Governors and also stimulated by the arrival of the French Huguenots in 1688. Constantia wines became internationally famous and thus were the first ‘wines of origin’ from South Africa. After the British occupation of the Cape in 1806, viticulture was further stimulated due to the inaccessibility of Europe and its wines to Britain at that stage. Vineyards were mainly established in the south-western coastal zone around the Cape and in adjacent Inland River valleys were irrigation water was available. These areas, characterized by a Mediterranean climate, are still the main wine producing regions today. Towards 1850, wine exports reached an ail time low because of the deterioration in wine quality, mainly as result of the absence of control over origin and quality. This problem was realized by the industry and resulted in a Wine of Origin Control system since 1973. Demarcation of existing vineyards was, and still is, done by technical experts, using four categories, viz. (1) Regions, based on broad geographical features and administrative boundaries; (2) Districts, based on geographical and macro climatic features; (3) Wards, essentially based on uniform soil, climatic and ecological patterns; and (4) Estates, based on the concept of singular ownership of vineyards and wine being produced on the estate. To demarcate Wards, land type maps are used. Land types are a concept unique to South Africa and are defined as a class of land over which the macro climate, the terrain form and soil pattern each displays a marked uniformity. Land types differ from each other in terms of macro climate, terrain form or soil pattern, or combinations of these natural factors. Lacking sufficient tradition, experience and experimental information, compared to the old word wine countries, the philosophy behind demarcation in South Africa is to identify natural terrain units, using available technical information, and then allowing such units to develop and demonstrate particular wine styles and character, rather than demanding proof of uniqueness before demarcation is done.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

D. SAAYMAN

Dept. Of Soil Science, University of Stellenbosch, P/Bag X1, Matieland, 7602, RSA

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.

Increasing microalgae biomass feedstock by valorizing wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU Green Deal aims t0 achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050. The deal strongly encourages GHG reducing measures at local, national and European levels. The REDWine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq. emissions produced in the winery industry value chain by utilizing biogenic fermentation CO2 for microalgae biomass production

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

Organic and biodynamic viticulture affect soil quality and soil microbial diversity

The production of organically grown crops developed exponentially in the last few decades based on consumer demands for healthy food