Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

Abstract

The southern Côtes-du-Rhône vineyard shows a significant variety of ecological facets over the Lower Rhone Valley. Intending to characterize such a variety of “terroir “called vineyard situations, a spatial approach based on identification of soil landscapes has been initiated. It was applied to a limited zone in part of the Valréas sedimentary basin, where local climate is likely homogeneous. Spatial distribution modelling of soil cover combine existing soil and geological data, using land survey, stereoscopic aerial photograph examination, satellite image processing. Map features are digitized within a Geographic Information System (GIS). 21 synthetic map units integrate 15 variables referring to soil, geomorphology, lithology, stratigraphy, vegetation, land form. The vine-growing terroirs, regarded as parts of agricultural lands consistent with both soil landscapes and harvestlwine response, are defined by clustering of the soil landscape units according to multivariate analysis. Terroir mapping is examined and validated in relation to wine response through Grenache harvest composition and its frequency over 1982-1996. Discriminant analysis is performed on the 1982-1996 must compositions of 14 sites related to 4 terroirs units. It shows that discrimination of the terroir units may be realized with the following variables: sugar content converted to expectable alcohol percentage (TAP, %), pH, titrable acidity (AT, g H2SO4/l.), weight of 200 berries (g/l), TAP/AT ratio.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

EMMANUELLE VAUDOUR (1, 2), M.C. GIRARD (1), L.M. BREMOND (2), L. LURTON (3)

(1) UER Dynamique des Milieux et Organisations Spatiales
Institut National Agronomique Paris-Grignon – 78850 Thiverval-Grignon (France)
(2) Syndicat Général des Vignerons Réunis des Côtes-du-Rhône
6, rue des Trois Faucons – 84000 Avignon (France)
(3) Comité Interprofessionnel des Vins d’AOC Côtes-du-Rhône et de la Vallée du Rhône Service technique, 2260, route du Grès, 84100 Orange (France)

Keywords

soil landscapes, vine-growing terroirs, harvest composition frequency, GIS

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Wine archeochemistry: a multiplatform analytical approach to chemically profile shipwreck wines

The Cape of Storms (also known as Cape of Good Hope) is renowned for harbouring a multitude of shipwrecks due to the inherent treacherous coastline and blistering storms.

Observatoire du Grenache en Vallée du Rhône: incidence du terroir sur la diversité analytique et sensorielle des vins

Rhone Valley A.O.C. Vineyards cover more than 70 000 hectares, of wich more than 40 000 plantedwith Grenache N. The Grenache observatory was created in 1995.

Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass

A few observations on double sigmoid fruit growth

Many fleshy fruit, including the grape berry, exhibit a double‐sigmoid growth (DSG) pattern. Identification of the curious DSG habit has long been attributed to Connors’ (1919) work with peaches

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.