Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

Abstract

The southern Côtes-du-Rhône vineyard shows a significant variety of ecological facets over the Lower Rhone Valley. Intending to characterize such a variety of “terroir “called vineyard situations, a spatial approach based on identification of soil landscapes has been initiated. It was applied to a limited zone in part of the Valréas sedimentary basin, where local climate is likely homogeneous. Spatial distribution modelling of soil cover combine existing soil and geological data, using land survey, stereoscopic aerial photograph examination, satellite image processing. Map features are digitized within a Geographic Information System (GIS). 21 synthetic map units integrate 15 variables referring to soil, geomorphology, lithology, stratigraphy, vegetation, land form. The vine-growing terroirs, regarded as parts of agricultural lands consistent with both soil landscapes and harvestlwine response, are defined by clustering of the soil landscape units according to multivariate analysis. Terroir mapping is examined and validated in relation to wine response through Grenache harvest composition and its frequency over 1982-1996. Discriminant analysis is performed on the 1982-1996 must compositions of 14 sites related to 4 terroirs units. It shows that discrimination of the terroir units may be realized with the following variables: sugar content converted to expectable alcohol percentage (TAP, %), pH, titrable acidity (AT, g H2SO4/l.), weight of 200 berries (g/l), TAP/AT ratio.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

EMMANUELLE VAUDOUR (1, 2), M.C. GIRARD (1), L.M. BREMOND (2), L. LURTON (3)

(1) UER Dynamique des Milieux et Organisations Spatiales
Institut National Agronomique Paris-Grignon – 78850 Thiverval-Grignon (France)
(2) Syndicat Général des Vignerons Réunis des Côtes-du-Rhône
6, rue des Trois Faucons – 84000 Avignon (France)
(3) Comité Interprofessionnel des Vins d’AOC Côtes-du-Rhône et de la Vallée du Rhône Service technique, 2260, route du Grès, 84100 Orange (France)

Keywords

soil landscapes, vine-growing terroirs, harvest composition frequency, GIS

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

Under-vine and between the rows: investigating sustainable floor management in vineyards

Investigating vineyard floor management is essential as these practices directly impact soil health, vine growth, and grape quality.

Effects of wine versus de-alcoholised wine on the microbiota-gut-brain axis in a tau-pathology murine model of Alzheimer’s disease

Alzheimer’s Disease (AD) is the most common disorder associated with cognitive impairment and the main cause of dementia globally. Multiple evidence in the last decade suggest that the gut microbiome plays an important role in the pathogenesis and progression of AD via the microbiota-gut-brain axis, a network wherein microbiome and the central nervous system crosstalk via endocrine, immune, neural, and microbial metabolites signalling pathways.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

Influence of harvest time and withering length combination on reinforced Nebbiolo wines: phenolic composition, colour traits, and sensory profile

Sforzato di Valtellina DOCG is a reinforced dry red wine produced in the mountain area of Valtellina alpine valley (North Italy), using ‘Nebbiolo’ grapes that undergo a withering process. This process impacts on the grape composition due to a sugar concentration and changes in secondary metabolism influencing volatile organic compounds (VOCs) and polyphenols.