Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

Abstract

The southern Côtes-du-Rhône vineyard shows a significant variety of ecological facets over the Lower Rhone Valley. Intending to characterize such a variety of “terroir “called vineyard situations, a spatial approach based on identification of soil landscapes has been initiated. It was applied to a limited zone in part of the Valréas sedimentary basin, where local climate is likely homogeneous. Spatial distribution modelling of soil cover combine existing soil and geological data, using land survey, stereoscopic aerial photograph examination, satellite image processing. Map features are digitized within a Geographic Information System (GIS). 21 synthetic map units integrate 15 variables referring to soil, geomorphology, lithology, stratigraphy, vegetation, land form. The vine-growing terroirs, regarded as parts of agricultural lands consistent with both soil landscapes and harvestlwine response, are defined by clustering of the soil landscape units according to multivariate analysis. Terroir mapping is examined and validated in relation to wine response through Grenache harvest composition and its frequency over 1982-1996. Discriminant analysis is performed on the 1982-1996 must compositions of 14 sites related to 4 terroirs units. It shows that discrimination of the terroir units may be realized with the following variables: sugar content converted to expectable alcohol percentage (TAP, %), pH, titrable acidity (AT, g H2SO4/l.), weight of 200 berries (g/l), TAP/AT ratio.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

EMMANUELLE VAUDOUR (1, 2), M.C. GIRARD (1), L.M. BREMOND (2), L. LURTON (3)

(1) UER Dynamique des Milieux et Organisations Spatiales
Institut National Agronomique Paris-Grignon – 78850 Thiverval-Grignon (France)
(2) Syndicat Général des Vignerons Réunis des Côtes-du-Rhône
6, rue des Trois Faucons – 84000 Avignon (France)
(3) Comité Interprofessionnel des Vins d’AOC Côtes-du-Rhône et de la Vallée du Rhône Service technique, 2260, route du Grès, 84100 Orange (France)

Keywords

soil landscapes, vine-growing terroirs, harvest composition frequency, GIS

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

The influence of terroir on the quality of wine of the Cahors A.O.C

Dans le but d’améliorer la qualité et la typicité des vins de l’Appellation d’0rigine Contrôlée CAHORS, une étude a été réalisée afin de mettre en évidence l’adéquation Cépage-Terroir- Qualité du vin.
Selon la méthodologie proposée par MORLAT et ASSELIN (1992), neuf unités terroirs ont été déterminées. Sur chacune, des parcelles de référence homogènes quant au matériel végétal Cot ou Malbec ( cépage principal de cette appellation greffé sur S04, et aux méthodes culturales, ont été suivies au niveau agronomique et œnologique (GARCIA et al., 1996).

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

Optimized protocol for high-quality RNA extraction from grape tissues using sorbitol pre-wash

Obtaining high-quality RNA from grape tissues, including berry pulp, berry skins, stems, rachis, or roots, is challenging due to their composition, which includes polysaccharides, phenolic compounds, sugars, and organic acids that can negatively affect RNA extraction. For instance, polyphenols and other secondary metabolites can bind to RNA, making it difficult to extract a pure sample. Additionally, RNA can co-precipitate with polysaccharides, leading to lower extraction yield. Also, sugars and organic acids can interfere with the pH and ionic properties of the extraction buffer. To address these challenges, we optimized a protocol for RNA isolation from grape tissues.

Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Moschofilero is a native grape variety, classified as a ‘gris’ type variety, that is cultivated in PDO Mantineia, Peloponissos, Greece. It is used for the production of both white and rosé wines. Due to high altitude of the vineyards, the harvest is done by mid October, and many vintages are characterised by high acidities and low pH values.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.