Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

Abstract

The southern Côtes-du-Rhône vineyard shows a significant variety of ecological facets over the Lower Rhone Valley. Intending to characterize such a variety of “terroir “called vineyard situations, a spatial approach based on identification of soil landscapes has been initiated. It was applied to a limited zone in part of the Valréas sedimentary basin, where local climate is likely homogeneous. Spatial distribution modelling of soil cover combine existing soil and geological data, using land survey, stereoscopic aerial photograph examination, satellite image processing. Map features are digitized within a Geographic Information System (GIS). 21 synthetic map units integrate 15 variables referring to soil, geomorphology, lithology, stratigraphy, vegetation, land form. The vine-growing terroirs, regarded as parts of agricultural lands consistent with both soil landscapes and harvestlwine response, are defined by clustering of the soil landscape units according to multivariate analysis. Terroir mapping is examined and validated in relation to wine response through Grenache harvest composition and its frequency over 1982-1996. Discriminant analysis is performed on the 1982-1996 must compositions of 14 sites related to 4 terroirs units. It shows that discrimination of the terroir units may be realized with the following variables: sugar content converted to expectable alcohol percentage (TAP, %), pH, titrable acidity (AT, g H2SO4/l.), weight of 200 berries (g/l), TAP/AT ratio.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

EMMANUELLE VAUDOUR (1, 2), M.C. GIRARD (1), L.M. BREMOND (2), L. LURTON (3)

(1) UER Dynamique des Milieux et Organisations Spatiales
Institut National Agronomique Paris-Grignon – 78850 Thiverval-Grignon (France)
(2) Syndicat Général des Vignerons Réunis des Côtes-du-Rhône
6, rue des Trois Faucons – 84000 Avignon (France)
(3) Comité Interprofessionnel des Vins d’AOC Côtes-du-Rhône et de la Vallée du Rhône Service technique, 2260, route du Grès, 84100 Orange (France)

Keywords

soil landscapes, vine-growing terroirs, harvest composition frequency, GIS

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming

What defines the aging signature of Chasselas wines?

Chasselas is a refined grape variety renowned for its subtlety and its remarkable ability to reflect terroir characteristics [1]. Typically consumed young, it is appreciated for its low acidity and delicate fruity and floral aromas.

Mechanical fruit zone leaf removal and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon grown in a hot climate

Cabernet Sauvignon is the top red wine cultivar in CA, however, the hot climate in Fresno is not ideal for Cabernet Sauvignon, particularly for berry color development. Fruit-zone leaf removal and irrigation were studied previously to have the significant effect on grape yield performance and berry quality. But the timing of leaf removal and the timing of irrigation are still inconclusive. Also, mechanical fruit-zone leaf removal is relatively new in CA. Our study aims to identify the interactive effect of mechanical fruit-zone leaf removal and irrigation on Cabernet Sauvignon’s yield performance and fruit quality and find the ideal timing of leaf removal and irrigation to maximize the berry color while maintaining the sustainable yield level.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.