Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

Abstract

The southern Côtes-du-Rhône vineyard shows a significant variety of ecological facets over the Lower Rhone Valley. Intending to characterize such a variety of “terroir “called vineyard situations, a spatial approach based on identification of soil landscapes has been initiated. It was applied to a limited zone in part of the Valréas sedimentary basin, where local climate is likely homogeneous. Spatial distribution modelling of soil cover combine existing soil and geological data, using land survey, stereoscopic aerial photograph examination, satellite image processing. Map features are digitized within a Geographic Information System (GIS). 21 synthetic map units integrate 15 variables referring to soil, geomorphology, lithology, stratigraphy, vegetation, land form. The vine-growing terroirs, regarded as parts of agricultural lands consistent with both soil landscapes and harvestlwine response, are defined by clustering of the soil landscape units according to multivariate analysis. Terroir mapping is examined and validated in relation to wine response through Grenache harvest composition and its frequency over 1982-1996. Discriminant analysis is performed on the 1982-1996 must compositions of 14 sites related to 4 terroirs units. It shows that discrimination of the terroir units may be realized with the following variables: sugar content converted to expectable alcohol percentage (TAP, %), pH, titrable acidity (AT, g H2SO4/l.), weight of 200 berries (g/l), TAP/AT ratio.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

EMMANUELLE VAUDOUR (1, 2), M.C. GIRARD (1), L.M. BREMOND (2), L. LURTON (3)

(1) UER Dynamique des Milieux et Organisations Spatiales
Institut National Agronomique Paris-Grignon – 78850 Thiverval-Grignon (France)
(2) Syndicat Général des Vignerons Réunis des Côtes-du-Rhône
6, rue des Trois Faucons – 84000 Avignon (France)
(3) Comité Interprofessionnel des Vins d’AOC Côtes-du-Rhône et de la Vallée du Rhône Service technique, 2260, route du Grès, 84100 Orange (France)

Keywords

soil landscapes, vine-growing terroirs, harvest composition frequency, GIS

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine.

Use of fumaric acid to control pH and inhibit malolactic fermentation in wines

In this audio recording of the IVES science meeting 2022, Antonio Morata (Universidad Politécnica de Madrid, Madrid, Spain) speaks about the use of fumaric acid to control pH and inhibit malolactic fermentation in wines.

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Optimization of aroma production in grape cell suspensions induced by chemical elicitor

Methyl-jasmonate (MeJA) induces the production of at least 25 compounds with sesquiterpene- like mass spectra in ‘Cabernet sauvignon’. Tost effective concentration of MeJA in stimulating the production of sesquiterpenes was found to be 500 µM if added when the cell suspensions had a PCV of 35 %, and 1000 if added when the cell suspensions had a PCV of 70 %.