Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonazione del comprensorio soave sulla base delle caratteristiche climatiche, pedologiche e viticole

Zonazione del comprensorio soave sulla base delle caratteristiche climatiche, pedologiche e viticole

Abstract

[English version below]

A tre anni dal suo inizio, nel 1997 si è conclusa la prima fase della ricerca “Caratterizzazione della produzione DOC Soave”. Lo studio ha basato il suo percorso sperimentale su alcuni punti fondamentali tra i quali:
• Recupero di tutte le informazioni storico-colturali sul vino Soave e sul suo territorio di produzione.
• Sulla base di questo bagaglio conoscitivo, suddivisione dell’area DOC in 14 possibili e potenziali sottozone individuabili per caratteri ambientali (giacitura, altitudine, esposizione, litologia etc.).
• Raccolta nel triennio dei dati di precipitazione e di temperatura. Analisi della tessitura del terreno e valutazione annuale dei bilanci idrici e degli stati di sofferenza del vigneto in seguito a insufficiente disponibilità in acqua.
• Esame della modalità di potatura invernale, del carico produttivo per pianta e per ettaro, vinificazione separata delle 14 sottozone.
• Valutazione sensoriale dei vini.
Sulla base delle informazioni ricavate dalle osservazioni di cui sopra, si è ottenuta una mappa della tipicità e dell’attitudine del comprensorio, fornendo ipotesi di valutazione del vino Soave slegate dal prevalere di alcuni luoghi comuni e legate invece alla effettiva potenzialità produttiva delle diverse zone. Le zone stesse sono risultate raggruppabili in alcuni comprensori più vasti, dei quali si forniscono le prime informazioni che nel proseguo dello studio verranno ulteriormente verificate prima di una loro definitiva codificazione.

Three years after its beginning, the first stage of the study “Characterization of the Soave DOC production”, ended in 1997.
The experimental course of the research was based on some fundamental aspects, including:
• Acquisition of all the historical and cultural information concerning Soave and the territory in which the wine is produced.
• According to this knowledge, the division of the DOC zone into 14 possible and potential subzones those are identifiable through their environmental features (position, altitude, exposure, lithology, etc.)
• Acquisition in the three-year period of data concerning rainfall and temperature. Analysis of the soil texture and yearly assessment of the water budget and stages of vineyard suffering due to the lack of water.
• Examination of the pruning system, productive load per plant and per hectare and separate vinification of the 14 zones.
• Sensory assessment of wines.
The information obtained from the aforementioned observations were used to produce a map of the typical features and aptitude of the district. This provided hypotheses for the examination of Soave free from some prevailing commonplaces and more related to the actual production potential of the different areas. The zones could also be grouped into wider districts, of which first information has been provided, and that the continuation of research will further assess before they are coded definitively.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

A. CAL0 (1), D. TOMASl (1), S. BISCAR0 (1), A. COSTACURTA (1), F. GIORGESS1 (1), G. VERZÈ (2), E. TOSI (3), R. Dl STEFAN0 (4)

(1) lstituto Sperimentale per la Viticoltura (Conegliano – TV)
(2) Consorzio Tutela 0.0.C. Soave (Soave-VR)
(3) Provincia di Verona
(4) lstituto Sperimentale per l’Enologia (Asti)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

Exploring diversified service offerings in the Spanish wine industry

The spanish wine industry stands at a crossroads, transitioning from a traditional emphasis on wine production to a landscape increasingly characterized by diversified service offerings. This paper delves into the nuances of servitization within spanish wineries, investigating the determinants of servitization and the impact of these diversified services on revenue streams. The paper posits hypotheses concerning the influence of various factors, such as winery size, location, market orientation, ownership structure, market competition, regulatory environment, market demand, firm capabilities, owner characteristics, and firm age, on the adoption of diversified service offerings in spanish wineries. The methodology involves comprehensive regression analysis to unravel the drivers of servitization within this context.

Wine growing regions global climate analysis

We depict the main features of five viticulture agroclimatic indices for 626 wine growing regions within 41 countries.

Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Aim: to elucidate if it is possible to detect variations in the source of nitrogen (organic vs. inorganic) measuring nitrogen isotope ratio (δ15N) in berries and to examine the degree of variation occurring for this parameter naturally within a vineyard.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.