Terroir 1996 banner
IVES 9 IVES Conference Series 9 Il piano regolatore delle citta’ del vino: una metodologia di lavoro

Il piano regolatore delle citta’ del vino: una metodologia di lavoro

Abstract

Sono quattro i terni fondamentali di questo progetto: la sostenibilità; la conoscenza; la parte­cipazione come strumento anche di riduzione della burocrazia e il tema della coerenza delle politiche di settore e della collaborazione fra gli Enti. Il Piano Regolatore delle Città del vino sa di essere chiamato non più solo a regolare gli aspetti edilizi del territorio, ma soprattutto a garantire l’uso sostenibile delle risorse territoriali. Questo significa che il piano, costruen­do patti solidali tra produttori, società ed ambiente, può diventare veramente la “Carta Statutaria” che regola il rapporto fra la comunità e il proprio ambiente d’insediamento. Questa è la strada per assicurare lo sviluppo sostenibile.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

PIER CARLO TESI

Architetto, Via Manni, 80 – Firenze

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Characteristics of ecological production of grape and wine in Prizren’s vineyard territory in Yugoslavia

Prizren’s vineyard territory-y assigned for ecological production of grapes and wine includes 1. 200 hectares of vineyard located in five separate localities which belongs to the P KB “Kosovo vina”, Mala Krusa in Prizren. Division of vineyard territory in zones was carried out in 1974. Pertaining to the vineyards, the climate and soil conditions have been studied and determined as well as topographie establishing of vineyard boundaries.

From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

Plant water status of grapevine plays a critical role in affecting berry and final wine chemical composition. The environmental variabilities existing in vineyard system have significant impacts on plant water status, but it is challenging to individualize environmental factors from the temporal and spatial variabilities in vineyard. Therefore, there is need to monitor the ecophysical variation through utilizing precision viticulture tools in order to minimize the separation in berry composition. This study aims at delineating vineyard into different management zones based on plant water status explained by soil texture, and utilize differential harvest to equilibrate the final berry and wine composition.

EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

Assyrtiko is a rare ancient grape variety that constitutes one of the most popular in Greece. The objective of the current research was to evaluate indigenous Saccharomyces cerevisiae isolates as fermentation starters and also test the possible strain impact on volatile profile of Assyrtiko wine. 163 S. cerevisiae isolates, which were previously selected from spontaneous alcoholic fermentation, were identified at strain level by interdelta-PCR genomic fingerprinting. Yeasts strains were examined for their fermentative capacity in laboratory scale fermentation on pasteurized Assyrtiko grape must.

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Soil incorporation of new superabsorbent hydrogels to improve vine tolerance to summer stress: physiological validation and vineyard applications

Hydrogels are soil-conditioning materials capable of absorbing substantial amounts of water relative to their weight.