Terroir 1996 banner
IVES 9 IVES Conference Series 9 Primary results on the characterisation of “terroir” in the certified denomination of origin Rioja (Spain)

Primary results on the characterisation of “terroir” in the certified denomination of origin Rioja (Spain)

Abstract

[English version below]

La integración de variables referentes al clima, la litología y la morfología del relieve y el suelo en la D.O. Ca Rioja permite la configuración de un modelo a través de cuya validación se obtiene la delimitación de zonas vitícolas. A través del análisis estadístico (Clasificación Automática, AFD, ACP,…) se eliminan las variables del clima que aportan información redundante, lo que permite la constitución de un modelo que con dos únicas variables (ETO e Índice de Costantinescu) explica el 88 % de la varianza y partir de el que se configura una cartografía en seis zonas climáticas vitícolas (Fig.1).
La litología es valorada a través de agrupaciones litológicas cuya cartografía da lugar a diecinueve subzonas con vocación vitícola diferenciada (Fig. 4). Las variables referentes a la morfología del relieve y el suelo son valoradas a través del concepto de Serie de Suelos (Fig. 7). El tratamiento de la información por un Sistema de Información Geográfica (GIS) da como resultado la cuantificación de los contenidos y la posibilidad de su tratamiento estadístico. El resultado es un modelo con resultado cartográfico cuyas unidades son evaluadas desde el punto de vista vitícola por un sistema paramétrico aplicado a la unidad taxonómica principal y adaptado a las condiciones ecológicas particulares de la viña que da como resultado cinco clases (Fig. 10). La validación de los resultados mediante su comparación con las unidades cartográficas anteriormente definidas se realiza a través de variables relacionadas con la distribución superficial y el rendimiento en conjunto y por variedades. (Tabla 4).

The integration of variables concerning the climate, lithology, morphology of the relief and the soils in the Denomination of Origin (D.O.) Ca Rioja permits for the configuration of a model from which the demarcation of viticultural regions are obtained after validation. By means of statistical analysis (automatic classification, AFD, ACP…), redundant climatic variables are eliminated, which permits for the construction of a model with only two variables (ETO and the Index of Constantinescu) that can explain 88% of the variation. From this analysis, a map with six viticultural climate zones was formed (Fig. 1). The lithology is valued by means of Iithological groupings, whose mapping shows nineteen subzones where land is dedicated to viticulture (Fig. 4). The variables concerning the morphology of the relief and the soils were appraised by means of the Soil Series concept (Fig. 7). Treatment of this information with a Geography Information System (GIS) provides results on the quantification of the contents and the possibility of statistical analysis. The result is a model with cartography properties, whose units are evaluated from a viticultural point of view by a parametric system, applied the principal taxonomic unit and adapted to particular ecological conditions in the vineyard. Five classes were the result (Figure 10). Validation of the results by comparison with cartographies units described previously was realized through variables related to the distribution or land area and overall vineyard productivity or varietal productivity (Table 4).

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

VICENTE SOTÉS, VICENTE GOMEZ-MIGUEL, LUIS F. SEOANE

Departamentos de Fitotecnia y Edafologia de la ETS de lngenieros Agrônomos. Universidad Politecnica de Madrid Avda Complutense s/n. 28040-Madrid

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.

Evaluating the greenness of wine analytical chemistry: A new metric approach

Wine is a complex matrix whose composition depends on climatic, agricultural, and winemaking factors, making quality control and authenticity assessment critical in the global market.

Techniques to study graft union formation in grapevine

Grapevines are grown grafted in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which were primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, grapevine rootstocks were also selected in relation their resistance to various abiotic stress conditions. Future rootstocks should have the potential to adapt viticulture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite to be able to use them with all the varieties. The objective of this work is to develop quantitative techniques to characterize graft union formation in grapevine.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.