Terroir 1996 banner
IVES 9 IVES Conference Series 9 Primary results on the characterisation of “terroir” in the certified denomination of origin Rioja (Spain)

Primary results on the characterisation of “terroir” in the certified denomination of origin Rioja (Spain)

Abstract

[English version below]

La integración de variables referentes al clima, la litología y la morfología del relieve y el suelo en la D.O. Ca Rioja permite la configuración de un modelo a través de cuya validación se obtiene la delimitación de zonas vitícolas. A través del análisis estadístico (Clasificación Automática, AFD, ACP,…) se eliminan las variables del clima que aportan información redundante, lo que permite la constitución de un modelo que con dos únicas variables (ETO e Índice de Costantinescu) explica el 88 % de la varianza y partir de el que se configura una cartografía en seis zonas climáticas vitícolas (Fig.1).
La litología es valorada a través de agrupaciones litológicas cuya cartografía da lugar a diecinueve subzonas con vocación vitícola diferenciada (Fig. 4). Las variables referentes a la morfología del relieve y el suelo son valoradas a través del concepto de Serie de Suelos (Fig. 7). El tratamiento de la información por un Sistema de Información Geográfica (GIS) da como resultado la cuantificación de los contenidos y la posibilidad de su tratamiento estadístico. El resultado es un modelo con resultado cartográfico cuyas unidades son evaluadas desde el punto de vista vitícola por un sistema paramétrico aplicado a la unidad taxonómica principal y adaptado a las condiciones ecológicas particulares de la viña que da como resultado cinco clases (Fig. 10). La validación de los resultados mediante su comparación con las unidades cartográficas anteriormente definidas se realiza a través de variables relacionadas con la distribución superficial y el rendimiento en conjunto y por variedades. (Tabla 4).

The integration of variables concerning the climate, lithology, morphology of the relief and the soils in the Denomination of Origin (D.O.) Ca Rioja permits for the configuration of a model from which the demarcation of viticultural regions are obtained after validation. By means of statistical analysis (automatic classification, AFD, ACP…), redundant climatic variables are eliminated, which permits for the construction of a model with only two variables (ETO and the Index of Constantinescu) that can explain 88% of the variation. From this analysis, a map with six viticultural climate zones was formed (Fig. 1). The lithology is valued by means of Iithological groupings, whose mapping shows nineteen subzones where land is dedicated to viticulture (Fig. 4). The variables concerning the morphology of the relief and the soils were appraised by means of the Soil Series concept (Fig. 7). Treatment of this information with a Geography Information System (GIS) provides results on the quantification of the contents and the possibility of statistical analysis. The result is a model with cartography properties, whose units are evaluated from a viticultural point of view by a parametric system, applied the principal taxonomic unit and adapted to particular ecological conditions in the vineyard. Five classes were the result (Figure 10). Validation of the results by comparison with cartographies units described previously was realized through variables related to the distribution or land area and overall vineyard productivity or varietal productivity (Table 4).

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

VICENTE SOTÉS, VICENTE GOMEZ-MIGUEL, LUIS F. SEOANE

Departamentos de Fitotecnia y Edafologia de la ETS de lngenieros Agrônomos. Universidad Politecnica de Madrid Avda Complutense s/n. 28040-Madrid

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Keg wine on tap: a sustainability-oriented innovation

How could the wine industry be more sustainable? To answer this, an Interreg French-Swiss project gathered researchers to help a French keg producer and a Swiss wine distributor make their innovation more ecological, social and economical. What innovation? A reusable plastic keg with a disposable airtight pouch inside.

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.

Exploring magnesium defficiency in Welschriesling grapevines: A multi-omics approach to address viticultural challenges

Magnesium (Mg) deficiency poses a significant challenge to viticulture, particularly affecting Welschriesling (WR), a key grape variety in Austrian and Central European vineyards.

The impact of nutrition label formats on wine consumer preferences

Recent regulations concerning alcoholic beverages have prompted producers to revise their product labels to incorporate nutritional information. In this context, qr codes containing such information, known as e-labels, are now being employed on wine labels for the first time.

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.