Terroir 1996 banner
IVES 9 IVES Conference Series 9 Elaboration des cartes conseils pour une gestion du terroir à l’échelle parcellaire: utilisation d’algorithmes bases sur des paramètres physiques du milieu naturel

Elaboration des cartes conseils pour une gestion du terroir à l’échelle parcellaire: utilisation d’algorithmes bases sur des paramètres physiques du milieu naturel

Abstract

The “Anjou Terroirs” programme aims at bringing the necessary scientific basis for a ratio­nal and reasoned exploitation of the technical itinerary of the terroir. The scale study is 1/12500. For the mapping, many parameters, such as the granulometry or the depth of soil are observed to each point of caracterisation. However, the composition and the quality of grapes do not depend directly on these parameters, but is influenced by variables such as water supply or vine precocity. These variables cannot be easily mapped, but can be esti­mated by algorithms based on expertise. The precision and the content of the cartographie study allow to quantify these main variables wich influence the vine behavior. It is therefore possible to build advisory maps that can be used by the vine growers at the scale of the par­cellary. As an example, a map on rootstock adaptation to the terroir has been published. Thanks to the knowledge obtained through a network of experimental plots, five fundamen­tal factors seems determinant to us, to choose a rootstock in Anjou condition: water sup­ply, natural drainage, iron chlorosis power of soil, vigour potential and precocity potential conferred by the terroir.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

P. GUILBAULT, R. MORLAT, D. RIOUX

INRA-URVV 42, rue Georges Morel BP57, 49071 BEAUCOUZE Cedex – France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Main viticultural soils in Castilla – La Mancha (Spain)

Castilla-La Mancha is the biggest vineyard in the world. Once similar soils have been identified in Castilla-La Mancha (soil

Defining gene regulation and co-regulation at single cell resolution in grapevine

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect.

Digitalization and valorization of the genotypic and phenotypic information retained within the FEM grapevine germplasm

The maintenance and valorization of genetic diversity is an undoubtable resource for the viticulture of the future, since the climate crisis is forcing us to think of new, more resilient varieties. For this reason, the grapevine germplasm of the Fondazione Edmund Mach has been continuously expanded in the last decade to a total of 3,120 accessions, whose trueness-to-type has been verified by means of the universal set of nine microsatellites. About two thirds are V. vinifera subsp. vinifera accessions, while the rest consists of naturalized and selected hybrids, V. vinifera subsp. sylvestris, and pure species. The genetic material has also been characterized over three consecutive years for ampelographic, vine development, and biotic stress response traits to be exploited for experimental purposes.

Satellite imagery : a tool for large scale vineyard management

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.

Isotope composition of wine as indicator of terroir spatial variability

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area