Terroir 1996 banner
IVES 9 IVES Conference Series 9 Le zonage viticole en Italie. État actuel et perspectives futures

Le zonage viticole en Italie. État actuel et perspectives futures

Abstract

Over the past few decades, viticultural research has made numerous contributions which have made it possible to better understand the behavior of the vine as well as its response to the conditions imposed on it by the environment and agronomic practices. However, these results have only rarely been used in the practical management of vineyards because the research has been carried out using partial experimental models where reality is only represented by a few factors which are sometimes even made more complex by the introduction of elements foreign to the existing situation and difficult to apply to production (varieties, methods of cultivation, management techniques, etc.). To these reasons, one could add a low popularization of the results obtained, as well as the difficulty of implementing scientific contributions, which does not allow the different production systems to fully express their potential. This limit of viticultural research can only be exceeded by the design of integrated projects designed directly on and for the territory. Indeed, only the integrated evaluation of a viticultural agro-system, which can be achieved through zoning, makes it possible to measure, or even attribute to each element of the system, the weight it exerts on the quality of the wine.

The purpose of zoning is, in fact, to produce information whose practical application in the short and long term is simple and possible. With this in mind, we can therefore recommend different levels of zoning which are the subject of studies of variable territorial extent (Fregoni, 1995) thus relying on different research methods (Falcetti, 1994).

The first possible level that can be defined of micro-zoning concerns the size of the farm (estate). This zoning should provide support for choosing the most effective business management techniques for each situation (choice of plant material, development of fertilization plans, identification of management techniques, etc.). This level of zoning, because it is carried out within the limits of an estate, does not have many repercussions on the territory. A survey carried out at this level does not necessarily require institutional skills (research institutes, local authorities, etc.) but it is exhausted within the framework of a private technical advice service (consulting).

We could call meso-zoning, on the other hand, the work that studies productive-administrative realities such as an appellation of origin. In this case, the zoning concerns a territory whose area is not very large (of the order of a few hundred or thousands of hectares) and can therefore use very detailed and effective analysis methods. Another advantage of meso-zoning is to refer to a well-defined interlocutor whose goal is to favor the development of a territory and all its products and not of a single farm. The zoning carried out on the scale of the vineyard of a cooperative cellar, quite frequent in the Italian wine panorama, falls into this category. These caves, the last level is that of macro-zoning, the aim of which is to study a broader geographical context, from the scale of a region to the community dimension (Riou, 1994). The practical repercussions of these zonings are not easy to identify because they are rather intended to study certain phenomena in a very general way, such as the distribution of a territory into a few homogeneous zones from a climatic point of view, or the comparison between the behavior of a few grape varieties in very different environments. What is lacking in the application of the results of such research is the detailed consideration of the variability of the territory which is very important in determining the oenological results of each region.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

M. FALCETTI (1), M. BOGONI (2), F. CAMPOSTRINl (1), A. SCIENZA (2)

(1) Dip. Produzione Agricola ed Agroalimentare
Istituto Agrario San Michele all’Adige (Trento)
(2) Istituto di Coltivazioni Arboree – Université di Milano

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

“Gentle” sustainable extraction from whole berry by using resonance waves and slight over CO2 overpressure

The traditional methods of grape extraction of enochemical compounds use very often mechanical energy by pistons such as the pigeage or mechanical energy produced by must (delestage, pumping over). Recent trend by winemaker is trying to introduce in the fermentation tank, whole berry grape to avoid even minimal oxidation. Unfortunately, the use of the traditional mechanical techniques aforementioned, very often do not guarantee the optimal extraction with residual sugars in the marc. Use of resonance waves (airmixingtm) and a slight overpressure by CO2 (adcftm) permit to work on whole berry guaranteeing the perfect extraction.

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.

Spatiotemporal patterns of chemical attributes in Vitis vinifera L. cv. Cabernet Sauvignon vineyards in Central California

Spatial variability of vine productivity in winegrapes is important to characterise as both yield and quality are relevant for the production of different wine styles and products. The objectives were to understand how patterns of variability of Cabernet Sauvignon fruit composition changed over time and space, how these patterns could be characterised with indirect measurements, and how spatial patterns of the variation in fruit compositional attributes can aid in improving management. Prior to the 2017 vintage, 125 data vines were distributed across each of four vineyards in the Lodi American Viticultural Area (AVA) of California. Each data vine was sampled at commercial harvest in 2017, 2018, and 2019. Yield components and fruit composition were measured at harvest for each data vine, and maps of yield and fruit composition were produced for eight ‘objective measures of fruit quality’: total anthocyanins, polymeric tannins, quercetin glycosides, malic acid, yeast assimilable nitrogen, β-damascenone, C6 alcohols and aldehydes, and 3-isobutyl-2-methoxypyrazine. Patterns of variation in anthocyanins and phenolic compounds were found to be most stable over time. Given this relative stability, management decisions focused on fruit quality could be based on zonal descriptions of anthocyanins or phenolics to increase profitability in some vineyards. In each vineyard, dormant season pruning weights and soil cores were collected at each location, elevation and soil apparent electrical conductivity surveys were completed, and remotely sensed imagery was captured by fixed wing aircraft and two satellite platforms at major phenological stages. The data collected were used to develop relationships among biophysical data, soil, imagery, and fruit composition. The standardised and aggregated samples from four vineyards over three seasons were included in the estimation of ‘common variograms’ to assess how this technique could aid growers in producing geostatistically rigorous maps of fruit composition variability without cumbersome, single season sampling efforts.

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.