Terroir 1996 banner
IVES 9 IVES Conference Series 9 Le zonage viticole en Italie. État actuel et perspectives futures

Le zonage viticole en Italie. État actuel et perspectives futures

Abstract

Over the past few decades, viticultural research has made numerous contributions which have made it possible to better understand the behavior of the vine as well as its response to the conditions imposed on it by the environment and agronomic practices. However, these results have only rarely been used in the practical management of vineyards because the research has been carried out using partial experimental models where reality is only represented by a few factors which are sometimes even made more complex by the introduction of elements foreign to the existing situation and difficult to apply to production (varieties, methods of cultivation, management techniques, etc.). To these reasons, one could add a low popularization of the results obtained, as well as the difficulty of implementing scientific contributions, which does not allow the different production systems to fully express their potential. This limit of viticultural research can only be exceeded by the design of integrated projects designed directly on and for the territory. Indeed, only the integrated evaluation of a viticultural agro-system, which can be achieved through zoning, makes it possible to measure, or even attribute to each element of the system, the weight it exerts on the quality of the wine.

The purpose of zoning is, in fact, to produce information whose practical application in the short and long term is simple and possible. With this in mind, we can therefore recommend different levels of zoning which are the subject of studies of variable territorial extent (Fregoni, 1995) thus relying on different research methods (Falcetti, 1994).

The first possible level that can be defined of micro-zoning concerns the size of the farm (estate). This zoning should provide support for choosing the most effective business management techniques for each situation (choice of plant material, development of fertilization plans, identification of management techniques, etc.). This level of zoning, because it is carried out within the limits of an estate, does not have many repercussions on the territory. A survey carried out at this level does not necessarily require institutional skills (research institutes, local authorities, etc.) but it is exhausted within the framework of a private technical advice service (consulting).

We could call meso-zoning, on the other hand, the work that studies productive-administrative realities such as an appellation of origin. In this case, the zoning concerns a territory whose area is not very large (of the order of a few hundred or thousands of hectares) and can therefore use very detailed and effective analysis methods. Another advantage of meso-zoning is to refer to a well-defined interlocutor whose goal is to favor the development of a territory and all its products and not of a single farm. The zoning carried out on the scale of the vineyard of a cooperative cellar, quite frequent in the Italian wine panorama, falls into this category. These caves, the last level is that of macro-zoning, the aim of which is to study a broader geographical context, from the scale of a region to the community dimension (Riou, 1994). The practical repercussions of these zonings are not easy to identify because they are rather intended to study certain phenomena in a very general way, such as the distribution of a territory into a few homogeneous zones from a climatic point of view, or the comparison between the behavior of a few grape varieties in very different environments. What is lacking in the application of the results of such research is the detailed consideration of the variability of the territory which is very important in determining the oenological results of each region.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

M. FALCETTI (1), M. BOGONI (2), F. CAMPOSTRINl (1), A. SCIENZA (2)

(1) Dip. Produzione Agricola ed Agroalimentare
Istituto Agrario San Michele all’Adige (Trento)
(2) Istituto di Coltivazioni Arboree – Université di Milano

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content.

What is the best soil for Sangiovese quality wine?

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].