Terroir 1996 banner
IVES 9 IVES Conference Series 9 Une méthode d’étude synthétique du paysage

Une méthode d’étude synthétique du paysage

Abstract

a) le vin, produit qualitatif et convivial à souhait, favorise un support visuel, même pour une étude scientifique car il renvoie à l’image du terroir, en particulier par son paysage visible.
b) le paysage viticole assez ouvert par définition favorise ce type d’approche.
c) le cadre de l’Essai Terroir mené par l’U.R.V.V. (I.N.R.A. – Angers) comporte 15 micro-parcelles de 100 souches, et nécessite à cette échelle des relevés précis du milieu, d’oîi des prises de vue systématiques, du centre de la parcelle, sur 360°, au 50 mm, à 1 m70 su sol et à l’horizontale. Ce type de relevé réalisable aussi au clisimètre ou au téodolithe, permet de saisir la totalité des composantes paysagères environnantes, puis de les grouper en masses homogènes qui, au-dessus des rangs de vigne, peuvent être des masques à l’ensoleillement et au vent. La perspective estompe naturellement l’influence de ces masques avec l’éloignement, par diminution de leur importance visuelle, l’épaisseur de ceux-ci ne peut être fournie que par la photographie aérienne, exploitée ici de source IGN.
Le recours à la photo possède l’avantage sur les appareils de mesure des distance et d’angles solides, d’aboutir à un document souvent flatteur et surtout palpable, mais dont la mise en oeuvre demeure plus longue et coûteuse.
d) la vue frontale sur 360° est scindée en deux panoramiques : l’un centré au Nord, l’autre au Sud par commodité de représentation spatiale quant à leur lecture.
La vue verticale ou aérienne n’est prise en compte que dans un rayon de 500 m du centre de la parcelle, distance semblant raisonnable quant à l’influence des masques sur celle-ci.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

J. ROBINET

I.N.R.A.-I.P.V. Unité de Recherche Vigne et Vin
42, rue Georges Morel, 49071 Beaucouzé cedex, France

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Spatial Analysis of Climate in Winegrape Growing Regions in Portugal

Spatial climate data at a 1 km resolution has allowed for a comprehensive mapping and assessment of viticulture DOs regions in Portugal. Overall the 50 regions and sub-regions in Portugal range

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Use of fumaric acid to control pH and inhibit malolactic fermentation in wines

In this audio recording of the IVES science meeting 2022, Antonio Morata (Universidad Politécnica de Madrid, Madrid, Spain) speaks about the use of fumaric acid to control pH and inhibit malolactic fermentation in wines.