Terroir 1996 banner
IVES 9 IVES Conference Series 9 Comparison of plant nutrients in the soil solution and bleeding sap of grapevine cvs

Comparison of plant nutrients in the soil solution and bleeding sap of grapevine cvs

Abstract

In this study macro and micro nutrients of plants (N = NH4 + NO3 , P, K, Ca, Na, Zn, Mn, Fe and Cu) were determined both in soil solution and bleeding sap and compared each other. Bleeding sap was collected from the nine varieties of grapevine Cvs. grafted on 5BB rootstock and grown in different soil conditions. For all varieties, plant nutrients content in bleeding sap as higher than in soil solution except for Ca and Na. While in soil solution Ca content was found at 10209 ppm, this value in bleeding sap was 49.20 ppm (Kozak Beyazy), 55.38 ppm (Trakya Ylkeren), 50.37 (Cardinal) and 74.27 ppm (Tekirdaô Çekirdeksizi) respectively. For the same varieties the Na values were as follows : 7.16 ppm (in soil solution) : 4.8, 3.23, 4.21,4.58 ppm (in bleeding sap) respectively. K content in bleeding sap was higher than in soil solution for a few varieties, and lower in some varieties. Traces of Fe and Cu were found in both media.

 

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

s. ÇELYK, Y. ÇATAL

Trakya University, Faculty of Agriculture, Department of Horticulture
59030 Tekirdaô – Turkey

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Efecto de la cota sobre el potencial enológico de tres varietales tintos en el sur de Tenerife

La zona sur de la Isla de Tenerife elabora principalmente vinos blancos. Desde hace unos años se intenta elaborar mayor cantidad de vinos tintos, siendo los resultados obtenidos variables en función

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

Chitosan is an effective antimicrobial agent available in the wine industry, because it ensures the control of a of spoilage microorganisms, such as Brettanomyces of lactic acid bacteria.

Comprehensive exploration of wine aroma-related compounds as promoted by alternative vinification procedures in case of Zelen (Vitis vinifera L.) grapes processing

Not only vintner’s decisions in the vineyard, but also winemaker’s choices of technology approaches in the cellar play a significant role in the final wine style and quality. Whereas traditional technologies within chosen terroir are quite well explored and thus somehow predictable, there is no proper knowledge available on possible outcomes in case of implementing novel, alternative winemaking strategies. To reveal their effects on wine aroma compounds and sensory characteristics, two alternative strategies
(cryoextraction or addition of whole grape berries during last stages of fermentation) were compared to classical Vipava valley winemaking approach as normally used for an autochthonous variety Zelen. After separate vinification and bottling, all the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS and were then also sensorialy evaluated by pre-trained panel.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.