Terroir 1996 banner
IVES 9 IVES Conference Series 9 Effets des pratiques agro-viticoles sur l’activité biologique et la matière organique des sols : exemples en Champagne et en Bourgogne

Effets des pratiques agro-viticoles sur l’activité biologique et la matière organique des sols : exemples en Champagne et en Bourgogne

Abstract

The notion of terroir covers multiple components, from geology, pedology, geomorphology and climatology (Doledec, 1995), to less well-identified aspects but also intervening in the “typicality” of wines. This justifies the “zoning” approach (Moncomble and Panigaï, 1990) to define homogeneous areas, under the same agro-viticultural management and also identified at the product level (Morlat and Asselin, 1992).

Cultivation practices form a component of the “terroir” which should not be neglected because it can be modified by human action. It is therefore necessary to know the consequences of the technical itineraries well, in order to be able to choose them according to the fixed data of the terroir and the desired characteristics of the product.

In this respect, soil maintenance techniques are certainly the most interesting to study, because of their interactions with water supply and vine nutrition. Such interactions have already been studied by viticultural monitoring (Soyer et al ., 1995; Aguhlon and Voile, 1995), but very little work has been devoted to direct measurements on the soil. This is what we have sought to do in the present work, relying on the experimental devices of Plumecoq and Montbré in Champagne and Mâcon-Clessé in Burgundy.

More broadly, our objective is to participate in promoting sustainable management of vineyard soils compatible with quality products. It is in fact a question of researching the most suitable cultural practices for:
1) conserve soils, in the face of “a worrying reactivation of erosion” (Roose, 1994)
2) control their characteristics linked to fertility (structure, organic reserves, biological activities, availability of nitrogen and water ).

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

F. ANDREUX (1), R. CHAUSSOD (2), A. DESCOTES (3), A. LAUMONIER (1,2), J. LEVEQUE (1), D. SAUVAGE (4)

(1) University of Burgundy, GeoSol Team, 6 Boulevard Gabriel. 21000 DIJON
(2) INRA Soil Microbiology, 17 rue Sully, BV 1540, 21034 DIJON cedex
(3) CIVC, 5 rue Henri Martin, BP 135, 51200 EPERNAY
(4) Chamber of Agriculture Service Viticole, 59 rue du 19 Mars 1952 71010 MASON cedex

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

Free and bound terpene profile of recovered minority white grape varieties by GC × GC-TOFMS

Climate change presents a significant challenge for actual viticulture. In this context, recovering minority grape varieties can be a crucial strategy to ensure resilience, particularly those capable of maintaining quality and aromatic complexity under water stress.

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.