Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

Abstract

AIM: In a recent study, it was determined that the mid-ripening period is the most suitable for the application of methyl jasmonate (MeJ), benzothiadiazole BTH and MeJ+BTH on Monastrell grapes, to favor maximum accumulation of phenolic compounds at the time of harvest. However, the increase in the anthocyanin content of grapes was not reflected in all the wines (Paladines-Quezada et al., 2021). For this reason, the aim of this work was to evaluate whether the application of two pre-harvest elicitors, MeJ and BTH on Monastrell grapes during two maturation stages, affects the composition and structure of their skin cell walls.

METHODS: This study was conducted for two years (2016 and 2017) on Vitis vinifera L. cv Monastrell, located in Jumilla (southeast Spain). A foliar application was carried out with a water suspension of 2 elicitors: (MeJ) 10 mM; (BTH) 0.3 mM, and a mixture of both. The treatments were applied at different timings of ripening (at veraison and mid-ripening). For all treatments, a second application was performed 7 days after the first application. The composition of the berry skin cell wall was analyzed.

RESULTS: MeJ and MeJ+BTH treatments applied at veraison had the greatest influence on the composition of the skin cell walls. They decreased the concentration of hemicellulose and pectic derivatives, and increased the concentration of lignin, proteins and phenols. On the other hand, BTH applied at veraison and mid-ripening was the only treatment that increased the concentration of cellulose in the skin cell walls.

CONCLUSIONS:

MeJ and MeJ+BTH treatments increased the concentration of the main components involved in cell wall strengthening. This fact can contribute to resistance to fungal attacks, but it can make it difficult to extract polyphenols from the skin during the maceration process

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diego F., Paladines-Quezada ,José I. FERNÁNDEZ-FERNÁNDEZ, IMIDA Juan D. MORENO-OLIVARES, IMIDA Juan A. BLEDA-SÁNCHEZ, IMIDA Rocío GIL-MUÑOZ

 Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Ctra. La Alberca s/n, 30150. Murcia-Spain

Contact the author

Keywords

Methyl jasmonate, benzothiadiazole, veraison, mid-ripening

Citation

Related articles…

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae.

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Esca complex is a disease affecting grapevine trunks, characterized by the colonization of the wood by xylem-residing fungi (Phaeomoniella chlamydospora, Phaeoacremonium minimum and Fomitiporia mediterranea), and posing significant risks to vineyard longevity since no efficient treatment is available. Despite its prevalence, the mechanisms beyond symptomatic manifestations like interveinal chlorosis and leaf necrosis remain unclear. Preliminary findings indicated a more pronounced metabolic reprogramming in fruits compared to vegetative organs and a putative impact on wine quality by using fruits from symptomatic grapevines.