Terroir 1996 banner
IVES 9 IVES Conference Series 9 Interactions « Terroir x Vigne » : facteurs de maîtrise du micro-environnement et de la physiologie de la plante en rapport avec le niveau de maturité et les éléments de typicité

Interactions « Terroir x Vigne » : facteurs de maîtrise du micro-environnement et de la physiologie de la plante en rapport avec le niveau de maturité et les éléments de typicité

Abstract

Le vigneron européen est de plus en plus à la recherche de la valorisation de son terroir par la personnalisation de la typicité de ses produits. Dans ce contexte, il est apparu depuis longtemps que la part des facteurs technologiques ou humains est d’une importance capitale face aux conditions de l’envirormement naturel. Le terroir se construit plus qu’il ne se subit.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

A. CARBONNEAU

ISVV, Centre ENSA.M/ INRA de Montpellier UFR de Viticulture
2, Place P. Viala 34060 MONTPELLIER CEDEX 1

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Fluorescence spectroscopy with xgboost discriminant analysis for intraregional wine authentication

AIM: This study aimed to use simultaneous measurements of absorbance, transmittance, and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics as a rapid method to authenticate wines from three vintages within a single geographical indication (GI) according to their subregional variations

Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Wine quality traits are usually given by parameters such as aroma profile, total acidity, alcohol content, colour and phenolic content, among others

Impact des systèmes de conduite, de la gestion des sols et de la capacité de rétention d’eau des sols sur l’état hydrique de la vigne à Cognac

Dans le cadre de TerclimPro 2025, Sébastien Zito a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/9161