Terroir 1996 banner
IVES 9 IVES Conference Series 9 La sémantique liée à la notion de terroir : une objectivité pluridisciplinaire

La sémantique liée à la notion de terroir : une objectivité pluridisciplinaire

Abstract

Il n’est pas évident au premier abord de donner une définition exhaustive de la notion de terroir tant celle-ci peut être simplifiée ou compliquée à souhait. Ainsi le flou qui entoure ce concept laisse la porte ouverte à diverses interprétations du terroir. Celles-ci tendent vers un niveau d’objectivité critiquable car les champs qu’elles explorent ne suffisent pas à expliquer la notion à eux seuls, constituant seulement la partie d’un tout. Nous pensons qu’il est nécessaire, pour appréhender une définition du concept de terroir la plus exhaustive possible, d’envisager le terroir comme un ensemble d’éléments en interaction les uns avec les autres. Partant de cette hypothèse, un terroir serait donc une entité unique en son genre du fait de combinaisons différentes des éléments entre eux. Ainsi la probabilité d’obtenir deux terroirs de même type diminue rapidement lorsque le nombre d’éléments augmente – sachant que pour n éléments il y a n (n-1) combinaisons possibles.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

J. MESNIER

 Université du Vin Suze la Rousse
26790 Suze la Rousse

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Bioprospecting of native Metschnikowia pulcherrima strains for biocontrol and aroma enhancement in the wine production chain

Metschnikowia pulcherrima is a well-studied non-conventional oenological yeast due to its positive contributions to winemaking as a bioprotective agent and as an aroma-enhancing starter in sequential fermentations with Saccharomyces cerevisiae (Binati et al., 2023; Canonico et al., 2023).

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.

Development of bioprospecting tools for oenological applications

Wine is the result of a complex biochemical process. From a microbiological point of view, the grape berry is characterised by a heterogeneous microbiota composed of different microorganisms (yeasts, bacteria and filamentous fungi) which will play a predominant role in the quality of the final product. At this level, yeasts play a predominant role in the chemistry of wine, as they

The use of viticultural and oenological performance of grapevines to identify terroirs: the example of Sauvignon blanc in Stellenbosch

Identification and characterisation of terroirs depends on knowledge of environmental parameters, functioning of the grapevine and characteristics of the final product. A network of plots of Sauvignon blanc was delimited in commercial vineyards in proximity to weather stations at 20 localities and their viticultural and oenological response was monitored for a period of seven years. These experimental plots were further characterised with respect to climate, soil and topography.

Identification of arbuscular mycorrhizal fungi species preferentially associated with grapevine roots inoculated with commercial bioinoculants 

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and can help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial bioinoculants containing AMF are widely available and represent a potential opportunity to reduce the dependence of grapevines on agrochemicals. However, which commercially available AMF species colonize vine roots and affect vine growth remains unknown. The aim of this study was to identify the AMF species from commercial bioinoculants that colonize grapevine roots using high-throughput sequencing, and to evaluate the performance of five commercial bioinoculants and their effects on own-rooted Cabernet sauvignon.