Terroir 1996 banner
IVES 9 IVES Conference Series 9 La sémantique liée à la notion de terroir : une objectivité pluridisciplinaire

La sémantique liée à la notion de terroir : une objectivité pluridisciplinaire

Abstract

Il n’est pas évident au premier abord de donner une définition exhaustive de la notion de terroir tant celle-ci peut être simplifiée ou compliquée à souhait. Ainsi le flou qui entoure ce concept laisse la porte ouverte à diverses interprétations du terroir. Celles-ci tendent vers un niveau d’objectivité critiquable car les champs qu’elles explorent ne suffisent pas à expliquer la notion à eux seuls, constituant seulement la partie d’un tout. Nous pensons qu’il est nécessaire, pour appréhender une définition du concept de terroir la plus exhaustive possible, d’envisager le terroir comme un ensemble d’éléments en interaction les uns avec les autres. Partant de cette hypothèse, un terroir serait donc une entité unique en son genre du fait de combinaisons différentes des éléments entre eux. Ainsi la probabilité d’obtenir deux terroirs de même type diminue rapidement lorsque le nombre d’éléments augmente – sachant que pour n éléments il y a n (n-1) combinaisons possibles.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

J. MESNIER

 Université du Vin Suze la Rousse
26790 Suze la Rousse

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

Forcing vine regrowth in Vitis vinifera cv. Touriga nacional at Douro region

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.