Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

Abstract

AIM: the aim of this study was to develop a method for fine-scale temperature zoning. The effect of temperature variability on vine phenology and grape composition was assessed in the production area of Saint-Emilion, Pomerol and their satellite appellations (Bordeaux, France).

METHODS: 90 temperature sensors were set up inside the vine canopy over an area of 19,233 ha, including 12,200 ha of vineyards. Hourly temperatures were recorded from 2012-2018. Vine phenology and grape ripening were monitiorred on 60 plots, close to temperature sensors. Vine water and nitrogen status were assessed by measuring, respectively, δ13C and yeast available nitrogen on grape must.

RESULTS: A spatial model, based on temperatures recorded by the sensors and environmental co-variables derived friom a digital elevation model, was developped to produce daily temperature maps over the study area. The effect of temperature on vine physiology was assessed. Significant variability was observed over the area for budbreak (19 days), flowering (9 days), véraison (13 days) and sugar ripeness (25 days). Sugar/acid ratio increased with higher temperatures and water deficit and decreased with higher vine nitrogen status.

CONCLUSIONS: A methodology was developped for fine scale temperature mapping inside a wine production area. The effect of temperature was assessed on vine development and grape ripening. This study shows that temperature variability is one of the major drivers of the terroir effect.

DOI:

Publication date: May 4, 2022

Issue: Macrowine 2021

Type: Article

Authors

van Leeuwen Cornelis, DE RESSÉGUIER Laure, PETITJEAN Théo, LE ROUX Renan, QUENOL Hervé

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France UMR6554 LETG, CNRS (France) 

Contact the author

Keywords

vine, temperature, terroir, digital elevation model, phenology, ripening

Citation

Related articles…

Resistance profiling of PIWI accessions: insights from Geisenheim university’s breeding program

Context and purpose of the study. Fungus-resistant grape varieties (PIWIs) represent a significant advancement toward more environmentally sustainable viticulture.

Terroir influence on growth, grapes and grenache wines in the AOC priorat, northeast Spain

The Mediterranean climate of The Priorat AOC, situated behind the coastal mountain range of Tarragona, tends towards continentality with very little precipitation during the vegetation cycle. The soil is poor, dry and rocky, largely composed of slate schist, known as “llicorella”. Vines primarily grow on steep slopes and terraces.

How the physical components of the terroir can differently intervene in French wines DPO definitions.Example of Côte de Nuits in Burgundy

European regulations describe what elements must be given in the specifications of DPO determination ; mainly production conditions, links between quality and products characteristics and the physical traits of the production area. These elements are given in the “link to terroir” paragraph relating natural and human factors, detailed product characteristics linked to the geographical area and at last interactions between product originality and the geographical area.

Impact of crop load management on terpene content in gewürztraminer grapes

Context and purpose of the study ‐ Crop load management by cluster thinning can improve ripening and the concentration of key metabolites for grape and wine quality. However, little work has been done on testing the impact of crop load management on terpene content of white grapes. The goal of the study was to assess if by reducing crop load via cluster thinning growers can increase terpene concentration of grapes, as well as to test if the timing of thinning application affects terpene concentration.

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.