Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

Abstract

AIM: the aim of this study was to develop a method for fine-scale temperature zoning. The effect of temperature variability on vine phenology and grape composition was assessed in the production area of Saint-Emilion, Pomerol and their satellite appellations (Bordeaux, France).

METHODS: 90 temperature sensors were set up inside the vine canopy over an area of 19,233 ha, including 12,200 ha of vineyards. Hourly temperatures were recorded from 2012-2018. Vine phenology and grape ripening were monitiorred on 60 plots, close to temperature sensors. Vine water and nitrogen status were assessed by measuring, respectively, δ13C and yeast available nitrogen on grape must.

RESULTS: A spatial model, based on temperatures recorded by the sensors and environmental co-variables derived friom a digital elevation model, was developped to produce daily temperature maps over the study area. The effect of temperature on vine physiology was assessed. Significant variability was observed over the area for budbreak (19 days), flowering (9 days), véraison (13 days) and sugar ripeness (25 days). Sugar/acid ratio increased with higher temperatures and water deficit and decreased with higher vine nitrogen status.

CONCLUSIONS: A methodology was developped for fine scale temperature mapping inside a wine production area. The effect of temperature was assessed on vine development and grape ripening. This study shows that temperature variability is one of the major drivers of the terroir effect.

DOI:

Publication date: May 4, 2022

Issue: Macrowine 2021

Type: Article

Authors

van Leeuwen Cornelis, DE RESSÉGUIER Laure, PETITJEAN Théo, LE ROUX Renan, QUENOL Hervé

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France UMR6554 LETG, CNRS (France) 

Contact the author

Keywords

vine, temperature, terroir, digital elevation model, phenology, ripening

Citation

Related articles…

Acumulación de materia seca, orientada a valorar la fijación de carbono, en función del aporte de riego y la pluviometría, en Cabernet-Sauvignon a lo largo de 15 años

The vineyard is capable of fixing carbon in its permanent structure from atmospheric carbon dioxide, through the process of gas exchange and the performance of photosynthesis. The photosynthetic capacity of the vineyard depends on the water resources that the plant may have at its disposal, so the amount of dry matter, derived from the processed photosynthates, that it can store will depend on the water regime of the crop, both in the annually renewable organs as in permanent parts.

Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

The effects of temperature on cv Piedirosso, indigenous of the Campania region (South of Italy), were tested in order to study its possible influence on grapevine and to discover how to optimize the qualitative expression

Bioprospecting of native Metschnikowia pulcherrima strains for biocontrol and aroma enhancement in the wine production chain

Metschnikowia pulcherrima is a well-studied non-conventional oenological yeast due to its positive contributions to winemaking as a bioprotective agent and as an aroma-enhancing starter in sequential fermentations with Saccharomyces cerevisiae (Binati et al., 2023; Canonico et al., 2023).

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.