Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

Abstract

AIM: the aim of this study was to develop a method for fine-scale temperature zoning. The effect of temperature variability on vine phenology and grape composition was assessed in the production area of Saint-Emilion, Pomerol and their satellite appellations (Bordeaux, France).

METHODS: 90 temperature sensors were set up inside the vine canopy over an area of 19,233 ha, including 12,200 ha of vineyards. Hourly temperatures were recorded from 2012-2018. Vine phenology and grape ripening were monitiorred on 60 plots, close to temperature sensors. Vine water and nitrogen status were assessed by measuring, respectively, δ13C and yeast available nitrogen on grape must.

RESULTS: A spatial model, based on temperatures recorded by the sensors and environmental co-variables derived friom a digital elevation model, was developped to produce daily temperature maps over the study area. The effect of temperature on vine physiology was assessed. Significant variability was observed over the area for budbreak (19 days), flowering (9 days), véraison (13 days) and sugar ripeness (25 days). Sugar/acid ratio increased with higher temperatures and water deficit and decreased with higher vine nitrogen status.

CONCLUSIONS: A methodology was developped for fine scale temperature mapping inside a wine production area. The effect of temperature was assessed on vine development and grape ripening. This study shows that temperature variability is one of the major drivers of the terroir effect.

DOI:

Publication date: May 4, 2022

Issue: Macrowine 2021

Type: Article

Authors

van Leeuwen Cornelis, DE RESSÉGUIER Laure, PETITJEAN Théo, LE ROUX Renan, QUENOL Hervé

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France UMR6554 LETG, CNRS (France) 

Contact the author

Keywords

vine, temperature, terroir, digital elevation model, phenology, ripening

Citation

Related articles…

Evaluating analytical methods for quantification of glutathione in grape juice and wine

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage.

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

The use of unripe frozen musts for modulating wine characteristics throughout acidity correction – effects on volatile and amino acid composition

As environmental issues come more to the fore, vineyards residues are being looked at as solutions rather than problems. Aiming to develop a sustainable methodology for musts acidity correction in the process of winemaking, much needed in warm regions, the present study was performed according to Circular Economy values.

Rootstocks and climate change: adding up means learning faster

In this video recording of the IVES science meeting 2025, Gonzaga Santesteban (Public University of Navarra, Pamplona, Spain) speaks about rootstocks, climate change and meta-analysis. This presentation is based on an original article accessible for free on OENO One.

Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Aging wine on lees benefits different wine sensory and technological properties including an enhanced resistance to oxidation. Several molecules released by yeast, such as membrane sterols and glutathione, have been previously proposed as key factors for this activity [1].