Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

Abstract

AIM: the aim of this study was to develop a method for fine-scale temperature zoning. The effect of temperature variability on vine phenology and grape composition was assessed in the production area of Saint-Emilion, Pomerol and their satellite appellations (Bordeaux, France).

METHODS: 90 temperature sensors were set up inside the vine canopy over an area of 19,233 ha, including 12,200 ha of vineyards. Hourly temperatures were recorded from 2012-2018. Vine phenology and grape ripening were monitiorred on 60 plots, close to temperature sensors. Vine water and nitrogen status were assessed by measuring, respectively, δ13C and yeast available nitrogen on grape must.

RESULTS: A spatial model, based on temperatures recorded by the sensors and environmental co-variables derived friom a digital elevation model, was developped to produce daily temperature maps over the study area. The effect of temperature on vine physiology was assessed. Significant variability was observed over the area for budbreak (19 days), flowering (9 days), véraison (13 days) and sugar ripeness (25 days). Sugar/acid ratio increased with higher temperatures and water deficit and decreased with higher vine nitrogen status.

CONCLUSIONS: A methodology was developped for fine scale temperature mapping inside a wine production area. The effect of temperature was assessed on vine development and grape ripening. This study shows that temperature variability is one of the major drivers of the terroir effect.

DOI:

Publication date: May 4, 2022

Issue: Macrowine 2021

Type: Article

Authors

van Leeuwen Cornelis, DE RESSÉGUIER Laure, PETITJEAN Théo, LE ROUX Renan, QUENOL Hervé

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France UMR6554 LETG, CNRS (France) 

Contact the author

Keywords

vine, temperature, terroir, digital elevation model, phenology, ripening

Citation

Related articles…

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

Estudio de la fertilidad de los suelos para la zonificación vitícola de la D.O. MONTILLA-MORILES

La D.O. Montilla-Moriles, situada en el sur de la provincia de Córdoba, corresponde a una de las zonas de mayor interés dentro de la vitivinicultura andaluza. Las formaciones de suelos

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties

Development of breeding of PIWI varieties in the Czech Republic

Context and purpose of the study. The Czech Republic is one of the most important grape growers of PIWI varieties in the Europe, as the total area planted with PIWI varieties is almost 1000 ha.

High and extreme high temperature effects on shiraz berry composition 

Climate change is leading to a rise in average temperature and in the frequency and severity of heatwaves, and is already significantly disturbing grapevine phenology and berry composition. With the evolution of the weather of Australian grape growing regions that are already warm and hot, flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted. These compounds include anthocyanins and tannins which contribute substantially to grape and wine quality. The goals of this project were to determine if berry tannin accumulation is sensitive to high temperature and to enhance knowledge on upper temperature limits for viable wine production, in turn informing critical timing for mitigation strategies.