terclim by ICS banner
IVES 9 IVES Conference Series 9 Deconstructing the soil component of terroir: from controversy to consensus

Deconstructing the soil component of terroir: from controversy to consensus

Abstract

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors. 
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect. 
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses. 
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Stefanos Koundouras

Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece

Contact the author

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Impact of dried stems in winemaking on Veneto Passito wines

The use of stems during fermentation is generally avoided due to the herbaceous off-odors they can impart to the wine. [1].

Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Aims: Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenological events and in the length of the growing season, which may affect grape quality. The aim of this research was to analyze the projected changes in vine phenology and on grape composition of the Tempranillo variety in Rioja DOCa under different climate change scenarios.

Wine growing terroirs: management of potential. New issues at stake for AOCs in France

Terroirs represent a heritage that must be studied and managed with appropriate methods; recourse to agronomic and oenological sciences alone is necessary, but is in no way sufficient without the contribution of the humanities.

Management of cover plants impacted the composition of Cabernet Sauvignon red wines in a temperate region of Brazil

– Several practices can be applied to vineyards in order to ensure good healthy for grapevines, adequate yield and fruit quality. Among them, the use of cover crops is a relevant option for soil management. It increases the organic matter, improves water infiltration, reduces risks of soil erosion and greenhouse gas emissions, in addition improving biodiversity in the vineyard.