terclim by ICS banner
IVES 9 IVES Conference Series 9 Effects of organic mulches on the soil environment and yield of grapevine

Effects of organic mulches on the soil environment and yield of grapevine

Abstract

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Alicia Pou1, Andreu Mairata1, David Labarga1, Miguel Puelles1, Enrique García-Escudero1 and Joaquín Huete2

1ICVV, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Spain
2Agro-climatic Information Service of La Rioja (SIAR), Gobierno de La Rioja, Spain

Contact the author

Keywords

mulching, bare soil, soil moisture, soil temperature, grape yield

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Organic Oregon: an emerging experience in terroir tourism

Emerging from anthropology, climatology, ecology, gastronomy, geography and wine tourism, terroir tourism has been recently recognized to have potential for developing rural agriculture tourism

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée.

Empreinte carbone et environnementale du vin en France : chiffres d’impact et bonnes pratiques à mettre en œuvre

Increasing concentrations of greenhouse gases (GHGs) in the atmosphere due to human activities are leading to a rise in the average temperature of the atmosphere. among the scenarios established by the un’s intergovernmental panel on climate change (IPCC), only two enable us to achieve the minimum objective of the paris agreements signed at cop 21 in 2015: staying below +2°c after 2050. both scenarios forecast a rapid reduction in GHG emissions as early as 2025, thanks to strong international cooperation, the priority given to sustainable development and responsible consumer choices.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.