terclim by ICS banner
IVES 9 IVES Conference Series 9 Projected changes in vine phenology of two varieties with different thermal requirements cultivated in La Mancha DO (Spain) under climate change scenarios

Projected changes in vine phenology of two varieties with different thermal requirements cultivated in La Mancha DO (Spain) under climate change scenarios

Abstract

The aim of this work was to analyze the phenology variability of Tempranillo and Chardonnay cultivars, related to the climatic characteristics in La Mancha Designation of Origin, and their potential changes under climate change scenarios. Phenological dates referred to budbreak, flowering, veraison and harvest were analyzed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The thermal requirements to reach each of these phenological stages were calculated and expressed as the GDD accumulated from DOY=60. Changes in phenology were projected by 2050 and 2070 taking into account those values and the projected temperatures and precipitation, simulated under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5– using an ensemble of models. The average phenological dates during the period under study were, April 16th ± 6.6 days and April 5th ± 6.0 days for budbreak, May 31st ± 6.0 days and May 27th ± 5.3 days for flowering, July 26th ± 5.6 days and July 25th ± 5.8 days for veraison, and Ago 23rd ± 10.8 days and Ago 17th ± 9.0 days for harvest, respectively, for Tempranillo and Chardonnay. The projected changes in temperature imply an average change in the maximum growing season (April-August) temperatures of 1.2 and 1.9°C by 2050, and 1.6 and 2.6°C by 2070, under the RCP4.5 and RCP8.5 scenarios, respectively. A reduction in precipitation is predicted, which vary between 15% for 2050 under RCP4.5 scenario and up to 30% by 2070 under RCP8.5. The advance of the phenological dates for 2050, could be of 6, 7, 7, and 8 days for Tempranillo and 4, 6, 6 and 9 days for Chardonnay, respectively for budbreak, flowering, veraison and harvest under the RCP4.5 scenario. Under the RCP8.5 emission scenario, the advance could be up to 30% higher.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Jesús Martínez1, Juan Luis Chacón1 and María Concepción Ramos2

1Regional Institute for Agri-food and Forestry Research and Development of Castilla-La Mancha (IRIAF), Tomelloso, Spain
2Dpt. Environment, University Lleida-Agrotecnio, Lleida, Spain

Contact the author

Keywords

budbreak, harvest, precipitation, temperature, veraison

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

The impact of global warming on Ontario’s icewine industry

Ontario’s wine regions lie at the climatic margins of commercial viticulture owing to their cold winters and short cool growing season. The gradual warming of northern latitudes projected under a human-induced climate change scenario could bring mixed benefits to these wine regions.

Natural sparkling wine pétillant naturel: technological features and sensory profile

The article presents the results of a study on the technological features of producing sparkling wines of the Pétillant Naturel (Pet-Nat) type, made using the ancestral method from the Muscat Ottonel and Pinot Noir grape varieties.

How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

When considering the application of a systemic approach to assess the intrinsic complexity of agricultural production, the following question immediately arises

Aroma diversity of Amarone commercial wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release.

Non-invasive grapevine inflorescence detection using YOLOv11 under field conditions

Accurate and early yield estimation in vineyards is essential for the effective management of resources and informed decision-making in viticulture.