terclim by ICS banner
IVES 9 IVES Conference Series 9 Bioclimatic shifts and land use options for Viticulture in Portugal

Bioclimatic shifts and land use options for Viticulture in Portugal

Abstract

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS) Classification Systems in mainland Portugal. As such, two past periods were analyzed: 1950–1979 and 1990–2019. A compound bioclimatic-shift exposure index (BSEI) is defined to identify the most exposed regions to recent climatic changes. The temporal evolution of land cover with vineyards between 1990 and 2018, as well as correlations with areas with bioclimatic shifts, are also analyzed. Results show an increase of 18.1% in the Warm Mediterranean with hot summer (Csa) climate in Portugal. This increase was followed by a 17.8% decrease in the Warm Mediterranean with warm summer (CSb) climate. Moreover, the WBCS Temperate areas also reveal a decrease of 5.11%. Arid and semi-arid ombrotypes areas increased, whilst humid to sub-humid ombrotypes decreased. Thermotypic horizons depict a shift towards warmer classes. BSEI highlights the most significant shifts in northwestern Portugal. Results show that vineyards have been displaced towards regions that are either the coolest/humid, in the northwest, or the warmest/driest, in the south. As vineyards in southern Portugal are commonly irrigated, options for the intensification of these crops in this region may threaten the already scarce water resources and challenge the future sustainability of these sectors. As similar problems can be found in other regions with Mediterranean-type climates, the main outcomes from this study can be easily extrapolated to other countries worldwide.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Cristina Andrade1,2, André Fonseca2,3 and João A. Santos2,3,4

1Natural Hazards Research Center (NHRC.ipt), Instituto Politécnico de Tomar, Tomar, Portugal
2Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
3Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
4Department of Physics, School of Sciences and Technology, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal

Contact the author

Keywords

Köppen-Geiger climate classification, worldwide bioclimatic classification ystem (WBCS), vineyards, Portugal

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology.

Generation and characterization of a training population in Vitis vinifera for enhanced genomic selection

Context and purpose of the study. Modern viticulture is facing significant challenges due to global climate changes, spanning from extreme heat spells and water scarcity to the acceleration of grapevine’s phenological development with important consequences from budbreak to harvest.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Carry over effect of shoot trimming and deficit irrigation on fruit yield and berry total soluble solids

The increase in air temperature that is occurring in many important wine-growing areas around the world is resulting in the decoupling between the phenolic and the technological maturity of grapevine berries. This new ripening pattern leads to the production of light-bodied high alcoholic wines, but this is in countertendency with the increasing consumers’ demand for wines with low-to-mid alcohol concentrations. The oenological techniques proposed to reduce wine alcohol content are often very expensive and lead to detrimental effects on wine quality. Many viticultural practices have been proposed to slow down sugar accumulation the berry. One possible strategy that was previously found to be suitable for Aglianico grapevine is post-veraison shoot trimming. The aim of this work was to assess the carry over effects on the following year of shoot trimming and vine water status on yield and total soluble solids because the expected reduction in vine fertility could lead to a reduction in the effectiveness of shoot trimming.

Natural glycolipids for the control of spoilage organisms in red wine

A natural glycolipid mixture obtained from the edible mushroom dacryopinax spathularia (“glycolipids”) is known to be an effective and approved antimicrobial treatment in non-alcoholic beverages at concentrations ranging from 5 – 100 mg/l. It has found a place alongside DMDC for the provision of microbial stability in soft drinks. These properties make the natural and sustainably produced glycolipids a promising candidate for the supplementation or replacement of SO2 in different winemaking processes.