terclim by ICS banner
IVES 9 IVES Conference Series 9 Bioclimatic shifts and land use options for Viticulture in Portugal

Bioclimatic shifts and land use options for Viticulture in Portugal

Abstract

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS) Classification Systems in mainland Portugal. As such, two past periods were analyzed: 1950–1979 and 1990–2019. A compound bioclimatic-shift exposure index (BSEI) is defined to identify the most exposed regions to recent climatic changes. The temporal evolution of land cover with vineyards between 1990 and 2018, as well as correlations with areas with bioclimatic shifts, are also analyzed. Results show an increase of 18.1% in the Warm Mediterranean with hot summer (Csa) climate in Portugal. This increase was followed by a 17.8% decrease in the Warm Mediterranean with warm summer (CSb) climate. Moreover, the WBCS Temperate areas also reveal a decrease of 5.11%. Arid and semi-arid ombrotypes areas increased, whilst humid to sub-humid ombrotypes decreased. Thermotypic horizons depict a shift towards warmer classes. BSEI highlights the most significant shifts in northwestern Portugal. Results show that vineyards have been displaced towards regions that are either the coolest/humid, in the northwest, or the warmest/driest, in the south. As vineyards in southern Portugal are commonly irrigated, options for the intensification of these crops in this region may threaten the already scarce water resources and challenge the future sustainability of these sectors. As similar problems can be found in other regions with Mediterranean-type climates, the main outcomes from this study can be easily extrapolated to other countries worldwide.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Cristina Andrade1,2, André Fonseca2,3 and João A. Santos2,3,4

1Natural Hazards Research Center (NHRC.ipt), Instituto Politécnico de Tomar, Tomar, Portugal
2Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
3Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
4Department of Physics, School of Sciences and Technology, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal

Contact the author

Keywords

Köppen-Geiger climate classification, worldwide bioclimatic classification ystem (WBCS), vineyards, Portugal

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

How climate change can modify the flavor of red Merlot and Cabernet-Sauvignon

he main goal of this research was to identify key aroma compounds linked with the maturity of grapes (ripe and overripe) and involved in grapes and wines with an intense dried fruits aroma. Odoriferous zones reminiscent of these aromas were detected by gas chromatography coupled with olfactometry (GC-O).

NMR approach for monitoring the photo-degradation of riboflavin and methionine

The light exposure of white wine is responsible for several reactions leading to changes on colour, flavours and, consequently, affecting the sensory profile.

Vinos de tea en la isla de la Palma

En el Norte de la Isla de La Palma (Islas Canarias), se cultivan un conjunto de varietales constituidos principalmente por Negramoll, Listán blanco, Prieto, Albillo y Muñeco.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.