terclim by ICS banner
IVES 9 IVES Conference Series 9 Bioclimatic shifts and land use options for Viticulture in Portugal

Bioclimatic shifts and land use options for Viticulture in Portugal

Abstract

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS) Classification Systems in mainland Portugal. As such, two past periods were analyzed: 1950–1979 and 1990–2019. A compound bioclimatic-shift exposure index (BSEI) is defined to identify the most exposed regions to recent climatic changes. The temporal evolution of land cover with vineyards between 1990 and 2018, as well as correlations with areas with bioclimatic shifts, are also analyzed. Results show an increase of 18.1% in the Warm Mediterranean with hot summer (Csa) climate in Portugal. This increase was followed by a 17.8% decrease in the Warm Mediterranean with warm summer (CSb) climate. Moreover, the WBCS Temperate areas also reveal a decrease of 5.11%. Arid and semi-arid ombrotypes areas increased, whilst humid to sub-humid ombrotypes decreased. Thermotypic horizons depict a shift towards warmer classes. BSEI highlights the most significant shifts in northwestern Portugal. Results show that vineyards have been displaced towards regions that are either the coolest/humid, in the northwest, or the warmest/driest, in the south. As vineyards in southern Portugal are commonly irrigated, options for the intensification of these crops in this region may threaten the already scarce water resources and challenge the future sustainability of these sectors. As similar problems can be found in other regions with Mediterranean-type climates, the main outcomes from this study can be easily extrapolated to other countries worldwide.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Cristina Andrade1,2, André Fonseca2,3 and João A. Santos2,3,4

1Natural Hazards Research Center (NHRC.ipt), Instituto Politécnico de Tomar, Tomar, Portugal
2Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
3Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
4Department of Physics, School of Sciences and Technology, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal

Contact the author

Keywords

Köppen-Geiger climate classification, worldwide bioclimatic classification ystem (WBCS), vineyards, Portugal

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

An overview of geological influences on South African vineyards

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.

Development of a GRASS-GIS application for the characterization of vineyards in the province of Trento

The physical factors that influence the grape ripening include elevation, slope, aspect, potential global radiation, sun hours and soil type of the vineyards.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

In red wine production, phenolic maturity is becoming increasingly important. Anthocyanins, flavonoids and total polyphenols content and availability significantly influence the harvest time of wine grapes while, during vinification process, their extraction strongly affects wine body, color and texture

Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Kékfrankos (Vitis vinifera L.) grapevines grafted on Teleki-Kober 5BB rootstock were submitted to water deficit under greenhouse conditions.