terclim by ICS banner
IVES 9 IVES Conference Series 9 Bioclimatic shifts and land use options for Viticulture in Portugal

Bioclimatic shifts and land use options for Viticulture in Portugal

Abstract

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS) Classification Systems in mainland Portugal. As such, two past periods were analyzed: 1950–1979 and 1990–2019. A compound bioclimatic-shift exposure index (BSEI) is defined to identify the most exposed regions to recent climatic changes. The temporal evolution of land cover with vineyards between 1990 and 2018, as well as correlations with areas with bioclimatic shifts, are also analyzed. Results show an increase of 18.1% in the Warm Mediterranean with hot summer (Csa) climate in Portugal. This increase was followed by a 17.8% decrease in the Warm Mediterranean with warm summer (CSb) climate. Moreover, the WBCS Temperate areas also reveal a decrease of 5.11%. Arid and semi-arid ombrotypes areas increased, whilst humid to sub-humid ombrotypes decreased. Thermotypic horizons depict a shift towards warmer classes. BSEI highlights the most significant shifts in northwestern Portugal. Results show that vineyards have been displaced towards regions that are either the coolest/humid, in the northwest, or the warmest/driest, in the south. As vineyards in southern Portugal are commonly irrigated, options for the intensification of these crops in this region may threaten the already scarce water resources and challenge the future sustainability of these sectors. As similar problems can be found in other regions with Mediterranean-type climates, the main outcomes from this study can be easily extrapolated to other countries worldwide.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Cristina Andrade1,2, André Fonseca2,3 and João A. Santos2,3,4

1Natural Hazards Research Center (NHRC.ipt), Instituto Politécnico de Tomar, Tomar, Portugal
2Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
3Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
4Department of Physics, School of Sciences and Technology, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal

Contact the author

Keywords

Köppen-Geiger climate classification, worldwide bioclimatic classification ystem (WBCS), vineyards, Portugal

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Differential responses of red and white grape cultivars trained to a single trellis system – the VSP

Commercial grape production relies on training grapevine cultivars onto a variety of trellis systems. Training allows for well-lit leaves and clusters, maximizing fruit quality in addition to facilitating cultivation, harvesting, and diseases control. Although grapevines can be trained onto an infinite variety of trellis systems, most red and white cultivars are trained to the standard VSP (Vertical Shoot Positioning) system. However, red and white cultivars respond differently to VSP in fruit composition and growth characteristics, which are yet to be fully understood. Therefore, the objective of this study was to examine the influence of the VSP trellis system on fruit composition of three red, Cabernet Sauvignon, Merlot and Syrah, and three white, Chardonnay, Riesling, and Gewurztraminer cultivars grown under uniform growing conditions in the same vineyard. All cultivars were monitored for maturity and harvested at their physiologically maximum possible sugar concentration to compare various fruit quality attributes such as Brix, pH, TA, malic and tartaric acids, glucose and fructose, potassium, YAN, and phenolic compounds including total anthocyanins, anthocyanin profile, and tannins. A distinct pattern in fruit composition was observed in each cultivar. In regards to growth characteristics, Syrah grew vigorously with the highest cluster weight. Although all cultivars developed pyriform seeds, the seed size and weight varied among all cultivars. Also varied were mesocarp cell viability, brush morphology, and cane structure. This knowledge of the canopy architectural characteristics assessed by the widely employed fruit compositional attributes and growth characteristics will aid the growers in better management of the vines in varied situations.

Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

AIM: Combined investigation of the influence of berry maturity, maceration time and wine maturation on the changes in polyphenols and sensory characteristics of Pinot noir and Cabernet-Sauvignon.

Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Grapevine rootstock is basic to achieve good adaptation of the vine to ground and environment.

Biomass carbon and nitrogen input from cover crops in an irrigated vineyard in Okanagan Valley, Canada

The use of cover crops in vineyards has been encouraged by positive effects on wine grape yield and sensory attributes, and improved soil function. This study examined the efficacy of three alleyway and three undervine cover crop treatments in an organic vineyard in the semiarid Okanagan Valley, Canada in 2021.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].