terclim by ICS banner
IVES 9 IVES Conference Series 9 Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Abstract

Water deficit is one of the most important effects of climate change able to affect agricultural sectors. In general, it determines a reduction in biomass production, and for some plants, as in the case of grapevine, it can endorse fruit quality. The monitoring and management of plant water stress in the vineyard is critical as well as the knowledge of how each specific cultivars react to it. A multidisciplinary study was carried out to compare the Cabernet Sauvignon and Aglianico, both black grapevine cultivars, responses to different pedoclimatic conditions of southern Italy. The research was conducted in three areas devoted to high-quality wine production of Campania, Molise, and Sicilia regions. This study reports the preliminary results of the Italian National project “Influence of agro-climatic conditions on the microbiome and genetic expression of grapevines for the production of red wines: a multidisciplinary approach (ADAPT)”. In each site, the environmental characteristics were described, and the soils were characterized through a pedological survey. During 2020-2021, soil water content and the principal weather variables (e.g., temperature, rainfall, solar radiation, etc.) have been monitored by means of in situ stations, while plant responses were collected by means of field campaigns (LAI, LWP, grapes composition). The agro-hydrological model SWAP was used to solve the soil water balance in each site and to determine the Crop Water Stress Index (CWSI) from April to October in the years 2020 and 2021. The obtained CWSI index was compared with data collected on plant status (e.g. LWP) and correlated to grapes quality (e.g., sugar content, acidity) in each site. Finally, the potential CWSI of each experimental site was determined on reference and future IPCC climate scenarios RCP 4.5 and RCP 8.5 to classify the attitude to produce plant water stress of each site and the expected future evolution.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Eugenia Monaco1, Maurizio Buonanno1, Filippo Ferlito2, Nicolosi Elisabetta3, Angelo Sicilia3, Angela Roberta Lo Piero3, Riccardo Aversano4, Clizia Villano4, Angelita Gambuti4, Raffaele Coppola5 and Antonello Bonfante1

1Institute for Mediterranean Agricultural and Forest Systems -CNR-ISAFOM, National Research Council, Portici (NA), Italy
2CREA- Olive, Fruit and Citrus Crops, Acireale (CT), Italy
3Department of Agricultural, Food and Environment, University of Catania, Italy
4Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
5University of Molise, Campobasso, Italy

Contact the author

Keywords

Cabernet sauvignon, Aglianico, CWSI, SWAP, quality

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Permanent vs temporary cover crops in a Sangiovese vineyard: preliminary results on vine physiology and productive traits

Cover crops in vineyards have been extensively studied, as the choice of grass species and their management significantly influence soil properties and vine performance.

Il vino nobile di Montepulciano

C’è grande attenzione al rapporto tra zonazione e marketing. Mi sembra però che ci sia anco­ra oggi un salto fra le pratiche di analisi del terreno e di deterrninazione di quello che potremo definire “cru” e quello che può essere la sua utilizzazione rispetto ai consumatori finali.

Health benefits of wine industry by-products

The total global production of wine in 2021 was estimated at around 250 million hectoliters. The 30% of the total quantity of vinified grapes corresponds to wine by-products that represent nearly 20 million tons, of which 50% corresponds to the European Union. Wine by-products have been used for different purposes, in agriculture, cosmetics, pharmacy, biorefinery, feed, and the food

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.