terclim by ICS banner
IVES 9 IVES Conference Series 9 Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Abstract

Water deficit is one of the most important effects of climate change able to affect agricultural sectors. In general, it determines a reduction in biomass production, and for some plants, as in the case of grapevine, it can endorse fruit quality. The monitoring and management of plant water stress in the vineyard is critical as well as the knowledge of how each specific cultivars react to it. A multidisciplinary study was carried out to compare the Cabernet Sauvignon and Aglianico, both black grapevine cultivars, responses to different pedoclimatic conditions of southern Italy. The research was conducted in three areas devoted to high-quality wine production of Campania, Molise, and Sicilia regions. This study reports the preliminary results of the Italian National project “Influence of agro-climatic conditions on the microbiome and genetic expression of grapevines for the production of red wines: a multidisciplinary approach (ADAPT)”. In each site, the environmental characteristics were described, and the soils were characterized through a pedological survey. During 2020-2021, soil water content and the principal weather variables (e.g., temperature, rainfall, solar radiation, etc.) have been monitored by means of in situ stations, while plant responses were collected by means of field campaigns (LAI, LWP, grapes composition). The agro-hydrological model SWAP was used to solve the soil water balance in each site and to determine the Crop Water Stress Index (CWSI) from April to October in the years 2020 and 2021. The obtained CWSI index was compared with data collected on plant status (e.g. LWP) and correlated to grapes quality (e.g., sugar content, acidity) in each site. Finally, the potential CWSI of each experimental site was determined on reference and future IPCC climate scenarios RCP 4.5 and RCP 8.5 to classify the attitude to produce plant water stress of each site and the expected future evolution.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Eugenia Monaco1, Maurizio Buonanno1, Filippo Ferlito2, Nicolosi Elisabetta3, Angelo Sicilia3, Angela Roberta Lo Piero3, Riccardo Aversano4, Clizia Villano4, Angelita Gambuti4, Raffaele Coppola5 and Antonello Bonfante1

1Institute for Mediterranean Agricultural and Forest Systems -CNR-ISAFOM, National Research Council, Portici (NA), Italy
2CREA- Olive, Fruit and Citrus Crops, Acireale (CT), Italy
3Department of Agricultural, Food and Environment, University of Catania, Italy
4Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
5University of Molise, Campobasso, Italy

Contact the author

Keywords

Cabernet sauvignon, Aglianico, CWSI, SWAP, quality

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Vineyard soils characterization and its influence on the grape quality of cv. Carmenère in the Maipo Valley, Chile

Produced since 1998, the De Martino Single Vineyard Carmenère is the first Carmenère Icon wine of Chile. The grapes are coming form a plot of 11 ha in Isla de Maipo, where the technicians of the winery have developed knowledge of their work, resulting in 3 levels of quality of the grapes.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Exploring typicity in Nebbiolo wines across different areas through chemical analysis

“Nebbiolo” is a red winegrape variety well known to produce monovarietal wines in Piemonte, Valle d’Aosta, and Lombardia regions, taking part to 7 DOCG (Denominazione di Origine Controllata e Garantita) and 22 DOC (Denominazione di Origine Controllata) protected designations of origin (PDO) [1,2].

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

Effects of Non-Grape Materials (MOG) on wine quercetin composition: insights from synthetic and Merlot grape juice fermentation

Quercetin precipitation has become an increasingly common issue in red wine, often resulting in visually unpleasant sediments and diminished product quality.