terclim by ICS banner
IVES 9 IVES Conference Series 9 Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Abstract

Water deficit is one of the most important effects of climate change able to affect agricultural sectors. In general, it determines a reduction in biomass production, and for some plants, as in the case of grapevine, it can endorse fruit quality. The monitoring and management of plant water stress in the vineyard is critical as well as the knowledge of how each specific cultivars react to it. A multidisciplinary study was carried out to compare the Cabernet Sauvignon and Aglianico, both black grapevine cultivars, responses to different pedoclimatic conditions of southern Italy. The research was conducted in three areas devoted to high-quality wine production of Campania, Molise, and Sicilia regions. This study reports the preliminary results of the Italian National project “Influence of agro-climatic conditions on the microbiome and genetic expression of grapevines for the production of red wines: a multidisciplinary approach (ADAPT)”. In each site, the environmental characteristics were described, and the soils were characterized through a pedological survey. During 2020-2021, soil water content and the principal weather variables (e.g., temperature, rainfall, solar radiation, etc.) have been monitored by means of in situ stations, while plant responses were collected by means of field campaigns (LAI, LWP, grapes composition). The agro-hydrological model SWAP was used to solve the soil water balance in each site and to determine the Crop Water Stress Index (CWSI) from April to October in the years 2020 and 2021. The obtained CWSI index was compared with data collected on plant status (e.g. LWP) and correlated to grapes quality (e.g., sugar content, acidity) in each site. Finally, the potential CWSI of each experimental site was determined on reference and future IPCC climate scenarios RCP 4.5 and RCP 8.5 to classify the attitude to produce plant water stress of each site and the expected future evolution.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Eugenia Monaco1, Maurizio Buonanno1, Filippo Ferlito2, Nicolosi Elisabetta3, Angelo Sicilia3, Angela Roberta Lo Piero3, Riccardo Aversano4, Clizia Villano4, Angelita Gambuti4, Raffaele Coppola5 and Antonello Bonfante1

1Institute for Mediterranean Agricultural and Forest Systems -CNR-ISAFOM, National Research Council, Portici (NA), Italy
2CREA- Olive, Fruit and Citrus Crops, Acireale (CT), Italy
3Department of Agricultural, Food and Environment, University of Catania, Italy
4Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
5University of Molise, Campobasso, Italy

Contact the author

Keywords

Cabernet sauvignon, Aglianico, CWSI, SWAP, quality

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition. 

Analytical characterization of Oloroso Sherry in Sherry Cask seasoning and its influence in the ageing of brandy de jerez

Oloroso Sherry is a typical fortified wine from Jerez de la Frontera (south of Spain). It is one of the most used in the seasoning of oak barrels, called Sherry Cask, destined in this area for ageing brandies or condiments as wine vinegars. Brandy de Jerez is an European Geographical Indication for grape-derived spirits. Its special organoleptic characteristics are due to its traditional dynamic ageing in Sherry Casks. American oak is the most common wood employed in Jerez area, where Brandy de Jerez is exclusively manufactured. During ageing period of Sherry and brandies, the wood is not only a container, it is involved in several physicochemical process with the Sherry or the distillate. Oak wood is the responsible of the presence of many compounds in the products, affecting their aroma and chemical composition and having a high influence in their final quality. Moreover, the seasoned wood with Sherry wine could transfer the compounds from wine into the brandy, improving its aroma and flavor.

Effect of elicitors and ripening moment on the phenolic composition of Monastrell

Grapevine (Vitis vinifera L.) is a globally cultivated crop and economically significant, particularly in the wine industry (Varela et al., 2024). Climate change is already affecting vineyards and is expected to worsen (Averbeck et al., 2019; Dupuis and Knoepfel, 2011).

Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Grapevine Red Blotch disease (RB) is a recently discovered disease that has become a major concern for the viticulture and winemaking industry in California, USA. The causal
agent, Grapevine Red Blotch Virus (GRBV) was identified in 2011 and its presence was confirmed in several states in the US, in Canada, and in Switzerland. It has been demonstrated that RB compromised the regulation of ripening by suppressing specific ripening events, altering the expression patterns of transcription factors and causing hormonal imbalances in Zinfandel.

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.