terclim by ICS banner
IVES 9 IVES Conference Series 9 Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Abstract

Water deficit is one of the most important effects of climate change able to affect agricultural sectors. In general, it determines a reduction in biomass production, and for some plants, as in the case of grapevine, it can endorse fruit quality. The monitoring and management of plant water stress in the vineyard is critical as well as the knowledge of how each specific cultivars react to it. A multidisciplinary study was carried out to compare the Cabernet Sauvignon and Aglianico, both black grapevine cultivars, responses to different pedoclimatic conditions of southern Italy. The research was conducted in three areas devoted to high-quality wine production of Campania, Molise, and Sicilia regions. This study reports the preliminary results of the Italian National project “Influence of agro-climatic conditions on the microbiome and genetic expression of grapevines for the production of red wines: a multidisciplinary approach (ADAPT)”. In each site, the environmental characteristics were described, and the soils were characterized through a pedological survey. During 2020-2021, soil water content and the principal weather variables (e.g., temperature, rainfall, solar radiation, etc.) have been monitored by means of in situ stations, while plant responses were collected by means of field campaigns (LAI, LWP, grapes composition). The agro-hydrological model SWAP was used to solve the soil water balance in each site and to determine the Crop Water Stress Index (CWSI) from April to October in the years 2020 and 2021. The obtained CWSI index was compared with data collected on plant status (e.g. LWP) and correlated to grapes quality (e.g., sugar content, acidity) in each site. Finally, the potential CWSI of each experimental site was determined on reference and future IPCC climate scenarios RCP 4.5 and RCP 8.5 to classify the attitude to produce plant water stress of each site and the expected future evolution.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Eugenia Monaco1, Maurizio Buonanno1, Filippo Ferlito2, Nicolosi Elisabetta3, Angelo Sicilia3, Angela Roberta Lo Piero3, Riccardo Aversano4, Clizia Villano4, Angelita Gambuti4, Raffaele Coppola5 and Antonello Bonfante1

1Institute for Mediterranean Agricultural and Forest Systems -CNR-ISAFOM, National Research Council, Portici (NA), Italy
2CREA- Olive, Fruit and Citrus Crops, Acireale (CT), Italy
3Department of Agricultural, Food and Environment, University of Catania, Italy
4Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
5University of Molise, Campobasso, Italy

Contact the author

Keywords

Cabernet sauvignon, Aglianico, CWSI, SWAP, quality

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

The Bergerac guaranteed vintage area « terroirs »

The vineyard of Bergerac, a guaranteed vintage, is situated in the mid-Lot valley, which has siliceous terraced rows on its hillsides, and on its bordering plateaux, composed of limestone and clay of the tertiary geological eras.

Changes in white wine composition after treatment with cationic exchange resin: impact on wine oxidation after 8 years of bottle storage

Samples from 3 wine types were treated with a cationic exchange resin (7 lots) and stored for 8 years (47 samples). Forty-seven parameters were determined, including (1) important substrates with impact in white wine oxidation and (2) markers of oxidation. From group 1, sugars, elements, phenolic compounds, α-dicarbonyls and SO2 and from group 2, browning (A420), acetaldehyde, alkanals, furanic compounds were quantified.

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.

The influence of climate on the grapevine phenology and content of sugar and total acids in the must

For the period of 10 years in the condition of Skopje vineyard area, at two regional (Vranec and Smederevka) and two international (Cabernet sauvignon and Chardonnay) grapevine cultivars, the researches are done.