terclim by ICS banner
IVES 9 IVES Conference Series 9 Ecophysiological performance of Vitis rootstocks under water stress

Ecophysiological performance of Vitis rootstocks under water stress

Abstract

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Eva P. Pérez-Álvarez1,2, Diego S. Intrigliolo3, Alejandro Martínez-Moreno1, Francisco García-Sánchez1, Jose M. Escalona4,5 and Ignacio Buesa1,4

1Consejo Superior de Investigaciones Científicas, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
2Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
3Consejo Superior de Investigaciones Científicas, Desertification Research Center (CSIC-UV-GV), Ecology Department, Valencia, Spain
4Universidad de las Islas Baleares (UIB), Departamento de Biología, Palma, Balearic Islands, Spain
5Agro-Environmental and Water Economics Institute-University of Balearic Islands (INAGEA-UIB), Palma, Balearic Islands, Spain

Contact the author

Keywords

antioxidant metabolism, biomass, chlorophyll fluorescence, hydraulic conductance, water use efficiency 

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

Guard cells and stomatal movement reveal early molecular interaction between grapevine cells and esca-associated pathogens

Esca is one of the major grapevine trunk diseases that cause vineyards decline and important economic losses in vineyards.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Decline of new vineyards in Southern Spain

In-season vineyard pest management relies on proper timing, selection, and application of products. Most of the research on pest management tends to focus on the influence of regional conditions on these aspects, with an emphasis on product timing and efficacy evaluation. One aspect that is not fully vetted in various vineyard regions is application (sprayer) technology. The purpose of this study was to determine the influence of regional conditions on sprayer performance in commercial wine grape vineyards in eastern Washington.