terclim by ICS banner
IVES 9 IVES Conference Series 9 Ecophysiological performance of Vitis rootstocks under water stress

Ecophysiological performance of Vitis rootstocks under water stress

Abstract

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Eva P. Pérez-Álvarez1,2, Diego S. Intrigliolo3, Alejandro Martínez-Moreno1, Francisco García-Sánchez1, Jose M. Escalona4,5 and Ignacio Buesa1,4

1Consejo Superior de Investigaciones Científicas, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
2Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
3Consejo Superior de Investigaciones Científicas, Desertification Research Center (CSIC-UV-GV), Ecology Department, Valencia, Spain
4Universidad de las Islas Baleares (UIB), Departamento de Biología, Palma, Balearic Islands, Spain
5Agro-Environmental and Water Economics Institute-University of Balearic Islands (INAGEA-UIB), Palma, Balearic Islands, Spain

Contact the author

Keywords

antioxidant metabolism, biomass, chlorophyll fluorescence, hydraulic conductance, water use efficiency 

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

First identification of a glycosylated fraction involved in mushroom-off-flavor in grapes: influence of B. cinerea, powdery mildew and C. subabruptus

An organoleptic defect, called fresh mushrooms off-flavor, appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, octan-3-ol and octen-3-ol

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.

Viticultural zoning in D.O.C. Ribeiro (Galicia, NW Spain)

L’AOC Ribeiro est la plus ancienne de Galice (NO de l’Espagne), avec une aire de production potentielle de 3.200 ha. Situé dans la région centrale de la vallée du Miño, le Ribeiro a un climat de tipe maritime tempéré qui se correspond avec la zone climatique II de Winkler.

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Remote sensing and radiometric techniques applied to vineyards in two regions of Rio Grande do Sul, Brazil

The observation of Earth by satellites has demonstrated the feasibility of establishing differences between plant species, from their spectral features. The reflectance spectrum of vine plants follows this trend, being possible to identify vineyards in satellite images, among other species.