terclim by ICS banner
IVES 9 IVES Conference Series 9 Ecophysiological performance of Vitis rootstocks under water stress

Ecophysiological performance of Vitis rootstocks under water stress

Abstract

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Eva P. Pérez-Álvarez1,2, Diego S. Intrigliolo3, Alejandro Martínez-Moreno1, Francisco García-Sánchez1, Jose M. Escalona4,5 and Ignacio Buesa1,4

1Consejo Superior de Investigaciones Científicas, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
2Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
3Consejo Superior de Investigaciones Científicas, Desertification Research Center (CSIC-UV-GV), Ecology Department, Valencia, Spain
4Universidad de las Islas Baleares (UIB), Departamento de Biología, Palma, Balearic Islands, Spain
5Agro-Environmental and Water Economics Institute-University of Balearic Islands (INAGEA-UIB), Palma, Balearic Islands, Spain

Contact the author

Keywords

antioxidant metabolism, biomass, chlorophyll fluorescence, hydraulic conductance, water use efficiency 

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Aromatic profile of chardonnay – clone 809: from berry to sparkling wine in an altitude vineyard

ine consumption is linked to the aromatic profile, consumer acceptance, and reflects the viticultural and oenological practices applied, together with the study related to clones is a way to evaluate the adaptation

Estimating grapevine crop coefficients at high-resolution using open-source satellite data

Climate change results in increasing water stress due to co-effects of rising evapotranspiration (ET) and decreased precipitation over the past 65 years (Spinoni et al. 2019).

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

Varietal volatile patterns of Italian white wines

Aroma diversity is one of the most important features in the expression of the varietal and geographic identity and sensory uniqueness of a wine. Italy has one of the largest ampelographic heritages of the world, with more than five hundred different varieties. Among them, many are used for the production of dry still white wines, many classified as Protected Designation of Origins and therefore produced in specific geographical areas with well-defined grape varieties. Chemical and sensory characteristics of the aroma of these wines have never been systematically studied, and the relative diversity has never been described and classified.