terclim by ICS banner
IVES 9 IVES Conference Series 9 Ecophysiological performance of Vitis rootstocks under water stress

Ecophysiological performance of Vitis rootstocks under water stress

Abstract

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Eva P. Pérez-Álvarez1,2, Diego S. Intrigliolo3, Alejandro Martínez-Moreno1, Francisco García-Sánchez1, Jose M. Escalona4,5 and Ignacio Buesa1,4

1Consejo Superior de Investigaciones Científicas, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
2Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
3Consejo Superior de Investigaciones Científicas, Desertification Research Center (CSIC-UV-GV), Ecology Department, Valencia, Spain
4Universidad de las Islas Baleares (UIB), Departamento de Biología, Palma, Balearic Islands, Spain
5Agro-Environmental and Water Economics Institute-University of Balearic Islands (INAGEA-UIB), Palma, Balearic Islands, Spain

Contact the author

Keywords

antioxidant metabolism, biomass, chlorophyll fluorescence, hydraulic conductance, water use efficiency 

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

Evolution of biogenic amines content in wine during sample conservation – method optimisation for analysis of biogenicamines

The present paper reports the development of an optimized method for simultaneous analysis of
8 biogenic amines (Histamine, Methylamine, Ethylamine, Tyramine, Putrescine, Cadaverine, Phenethylamine, and Isoamylamine). It is based on a method developed by Gomez-Alonso et al. in 2007.

Ugni blanc berry and wine composition impacted by thirteen rootstocks

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019).

Isotope composition of wine as indicator of terroir spatial variability

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area