terclim by ICS banner
IVES 9 IVES Conference Series 9 Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Abstract

Since the arrival of Phylloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it is used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Grégoire Loupit1, Josep Valls Fonayet2 and Sarah Jane Cookson1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2Univ. Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, France

Contact the author

Keywords

metabolites, markers, transcripts, graft incompatibility, polyphenols

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

A look back at 20 years of exploring the future of the vines and wines sector

What if, in 25 years, most wines were dealcoholized and flavored ? What if vines were only cultivated to combat erosion, store carbon, and provide anthocyanins…? What if climate change completely changed the list of vine varieties cultivable for wine production in France? What if food stores had completely disappeared in favor of virtual platforms? And if… because the long-term future is not predetermined and therefore not knowable, because the future is open to several possibilities, because the future does not emerge from nothing but from the present which conceals heavy trends and weak signals, prospective approaches make it possible to consider the room for maneuver that actors have to promote the advent of a future, which we can hope to be chosen, at least in part.

Wine chemical markers assess nitrogen levels in original grape juice

Nitrogen (N) nutrition of the vineyard plays a crucial role in the composition of must and wine, impacting fermentation, as well as the aroma and taste of the final product. N-deficient grape juice can result in increased astringency and bitterness, and a decrease in pleasant aromas in the wine.

Tomatoes and Grapes: berry fruits with a (bright) biotech future?

Tomatoes and Grapes are berries that are genetically related and therefore at least partially their developmental pathways leading to a fleshy fruit should share some of the components. In a sense knowledge obtained from the model plant tomato could be useful for grape and conversely the more amenable tomato can be used to test some hypothesis that would be difficult to obtain in grape. Research in my lab and other labs have led to a better understanding of the molecular genetics mechanisms underlying fruit development and ripening in tomato and more specifically those related to metabolite accumulation that may lead to changes in fruit nutritional and flavor composition. This research has involved the use of genetic variability in natural population, but also biparental population and genetically engineered lines that are easy to develop in tomato tomato but not in grape. NGTs also can be easily implemented in tomato to not only speed up the gene-to-trait but also develop new tomato varieties.

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Fifteen nepoviruses are able to induce fanleaf degeneration in grapes. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease

Cinétique de développement de la Pourriture Noble dans différents terroirs des Coteaux du Layon : mise au point d’une méthodologie

Dans la région des Coteaux du Layon, en Maine et Loire, l’effet terroir et son déterminisme sont étudiés dans le cadre de la production des vins liquoreux.
Ces vins sont le résultat d’une maturité poussée au delà de celle prévue par la nature afin de donner aux baies une teneur en sucre et en matière sèche très forte, pour mieux valoriser ces effets de la surmaturation, les baies sont récoltées selon la méthode des tries successives (Asselin et al, 1996). Ainsi, on ne récolte à chaque passage que les grains ayant atteint le niveau de concentration requis pour obtenir des vins à fort degré d’alcool avec des sucres résiduels.