terclim by ICS banner
IVES 9 IVES Conference Series 9 Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Abstract

Since the arrival of Phylloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it is used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Grégoire Loupit1, Josep Valls Fonayet2 and Sarah Jane Cookson1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2Univ. Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, France

Contact the author

Keywords

metabolites, markers, transcripts, graft incompatibility, polyphenols

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Polyphenols, namely anthocyanins and flavanols, are key compounds for wine color definition and taste perception (astringency and bitterness). During winemaking, several processes could influence the polyphenol composition and, therefore, the organoleptic parameters of wine.

Promoting sustainability in Mediterranean agriculture: insights from the Portuguese vine & wine sector

Agroecology is an integrated approach that simultaneously applies ecological and social concepts and principles to redesign and manage food and agricultural systems, promoting agroecosystems with the necessary biological, socio-economic, and institutional diversity and alignment to support greater efficiency. Thus, several studies have been carried out at promoting the adoption of more agroecological practices among farmers and a wider audience concerning soil conservation and health maintenance.

Determination of the maturity status of white grape berries (Vitis vinifera L. cv Chenin) through physical measurements

La véraison, stade intermédiaire du développement de la baie de raisin, correspond au début de la maturation. Aux modifications de coloration de la pellicule sont associées une perte de fermeté, une diminution de l’acidité et une augmentation des teneurs en sucres et pigments ainsi que du volume de la baie. Le stade de véraison des cépages blancs reste difficile à apprécier visuellement. Son évaluation par palpation est subjective et donc sujette à caution.

Replay of the Wine Vision 2040 event

A webinar organised by the UBC Wine Research Centre, on June 25th 2020. About Wine Vision 2040 Wine Vision 2040 is delivered by wine-passionate, high-profile individuals keen to share ideas and views that will spark conversations within wine communities.  No...

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols.