terclim by ICS banner
IVES 9 IVES Conference Series 9 A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Abstract

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Sebastian Candiago1,2, Simon Tscholl2,3, Leonardo Bassani2, Helder Fraga4 and Lukas Egarter Vigl2

1Ca’ Foscari University of Venice, Department of Economics, Venezia, Italy
2Institute for Alpine Environment, Eurac Research, Bozen/Bolzano, Italy
3Department of Ecology, University of Innsbruck, Innsbruck, Austria
4Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal

Contact the author

Keywords

adaptation, climate change, geographical indication, geospatial data

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Study of Spanish wine sensory analysis data over a 3-year period

This study presents an investigation based on sensory analysis data of Spanish wines with geographical indications collected over a three-year period. Sensory analysis plays a crucial role in assessing the quality, characteristics, and perception of wines. The trained tasting panel at Dolmar Laboratory, accredited for objective sensory evaluation of wines since 2016, has been tasting over 5000 wines. However, it is since 2021, when a computer application for tastings was developed, that the digitalization of data allows for detailed statistical analysis of the results.

Influence of light exclusion on anthocyanin composition in ‘Cabernet sauvignon’

The aim of this study was to determine how artificial shading influenced berry development and anthocyanin accumulation in ‘Cabernet sauvignon’. Opaque polypropylene boxes were applied to grape bunches over three different developmental stages.

Validation of phenological models for grapevine in the Veneto region

In this study we have compared the predictive ability of two phenological models: a traditional Thermal Time (TT) and a version of the more recently develop Unified Model (UM).

Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions

Enhancing vineyard resilience: three years of weather-based disease modeling in Moldova’s precision viticulture

Due to ongoing climate change, managing vineyard diseases has become increasingly challenging in the Republic of Moldova.