GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Towards the definition of a detailed transcriptomic map of grape berry development

Towards the definition of a detailed transcriptomic map of grape berry development

Abstract

Context and purpose of the study ‐ In the last years the application of genomic tools to the analysis of gene expression during grape berry development generated a huge amount of transcriptomic data from different varieties and growing conditions. This information set the stage to understand the molecular basis of crucial developmental and metabolic rearrangements occurring during grape berry formation and ripening. It is now clear that the variation of a portion of berry transcriptome is conserved across cultivars and growing conditions, and thus may be used universally to describe the stage of berry development. In this work we explore the possibility of using the transcriptomic data generated from two cultivars to define a very detailed developmental map of the grape berry.

Material and methods ‐ To map the molecular events associated with berry development at very high temporal resolution, we performed RNA‐seq analysis of berry samples collected every week from fruit‐ set to maturity from Pinot noir and Cabernet Sauvignon vines grown in the same location. The experiment was replicated across three consecutive years (2012, 2013, 2014) resulting in 219 samples overall. Applying multivariate analyses to the most variable portion of the transcriptome, we built a transcriptomic model of berry development based on the molecular information obtained from samples of both cultivars.

Results ‐ The Pinot noir and Cabernet Sauvignon samples mostly aligned in a 3D transcriptomic map (~80% of the variance described by Principal Component Analysis), allowing to define a general model of berry development based on gene expression. The performance of the model in describing the development of other grape varieties was accessed projecting RNA‐seq samples of fruit development of ten Italian cultivars onto the model. Both red and white‐skin berry samples mapped on the transcriptomic map and revealed alignment by standard ripening parameters (e.g. total soluble solids) as well as unrelated to any of these. Moreover, we validated that berry maturation of the same cultivar cultivated in different International growing regions can be well represented and aligned by means of our transcriptomic map. These results showed that the transcriptomic information can be accessed to precisely define a model of “molecular phenology” that can be used to map the ontogenetic development of the fruit with high precision and to align the stage of berry development of different grapes. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Marianna FASOLI (1), Chandra L. RICHTER (1), Sara ZENONI (2), Marco SANDRI (2), Paola ZUCCOLOTTO (3), Mario PEZZOTTI (2), Nick DOKOOZLIAN (1), and Giovanni Battista TORNIELLI(2)

(1) E&J Gallo Winery, Modesto, CA 95353, USA
(2) Department of Biotechnology, University of Verona, 37134 Verona, Italy
(3) Big & Open Data Innovation Laboratory, University of Brescia, 25123 Brescia, Italy

Contact the author

Keywords

Grapevine, Berry development, Ripening, Molecular Phenology, Transcriptomics

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of ‘pinotage’ defoliation on fruit and wine quality

Among the different management techniques in Viticulture, which have
been developed with the purpose of optimizing the interception of sunlight, the photosynthetic capacity of
the plant and the microclimate of the clusters, especially in varieties that show excess vigor, the management of defoliation presents great importance. The defoliation consists of the removal of leaves that cover or that are in direct contact with the curls, which can cause physical damages in the berries, and aims to balance the relation between part area and number of fruits, providing the aeration and insolation in the interior of the vineyard, as well as reduce the incidence of rot in order to achieve greater efficiency in phytosanitary treatments and quality musts.

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,

Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Winter pruning is today the longest operation for hand workers in the vineyard. Over the last years, mechanical pruning practices have become popular in southern France vineyards to respond to competitiveness issue especially for the basic and mid-range wine production. Wine farmers have developed different vineyard management techniques associated with mechanical winter pruning. They sought to be precise or not to control the buds number per vine.

Observatoire du Grenache en Vallée du Rhône: incidence du terroir sur la diversité analytique et sensorielle des vins

Rhone Valley A.O.C. Vineyards cover more than 70 000 hectares, of wich more than 40 000 plantedwith Grenache N. The Grenache observatory was created in 1995.

Gas chromatography-olfactometry characterization of corvina and corvinone young and aged wines

AIM AND METHODS: Corvina and Corvinone are the two main grape varieties used in the production of Valpolicella, Recioto and Amarone, top-quality red wines in north-eastern Italy. This work aimed at determining the aroma composition of Corvina and Corvinone experimental wines and identify the main aroma compounds contributing to the aroma characteristics of Corvina and Corvinone monovarietal wines. Five Corvina and five Corvinone wines were studied, the grapes coming from five different vineyards in Valpolicella. Volatile compounds were extracted by SPE and identified and quantified by gas chromatography-mass spectrometry (GC-MS), whereas their aroma impact was determined by gas chromatography- olfactometry (GC-O).RESULTS: Based on the GC-MS-O analysis, 95 odor zones were detected, from which 68 compounds were successfully identified. Using the criterion of a value higher than 30% in modified frequency (MF %), 51 compounds were selected and grouped according to odor similarity. Compounds with values below 30% were discarded.