WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Mining terroir influence on bioactive polyphenols from grape stems: A correlation-network-driven approach to spatialize metabolomics data

Mining terroir influence on bioactive polyphenols from grape stems: A correlation-network-driven approach to spatialize metabolomics data

Abstract

In viticulture, the concept of terroir is often used to enlighten the environmental-based typicity of grapevines grown in a local area however its scientific basis remains under debate. Grape polyphenols as key player of the plant defense system enables adaptation to environmental changes and so far, form a unique metabolic component to investigate the terroir influence. Using correlation-based networks and spatial metabolomics we investigated how continuous changes of soil properties may impact the polyphenol composition within a single grape clone. In a vineyard parcel covering four different geological layers and planted with a unique clone of Cabernet Franc, the soil texture was analyzed at 30 georeferenced points with a spatial coverage sampling strategy. Grape stems were harvested at corresponding positions over 3 consecutive years followed by UPLC-DAD-MS-based metabolomic analysis targeted on 43 metabolites including flavonoids, phenolic acids, procyanidins and stilbenoids. Principal component analyses on intra-vintage data presented good reproducibility. A correlation-driven approach was used to select co-varying metabolites before using Geographic Information System (GIS). As results, flavonoids and stilbenoid DP4 were spatialized according to soil granulometry, with stilbenoid DP4 over-accumulating in loamy-silty soils and flavonoids in sandy soils. The present study highlights soil-based terroir influence on polyphenols in a continuous space. Spatial metabolomics driven by correlation-based networks represents a powerful approach to spatialize field-omics data and may serve as new field-phenotyping tool in precision agriculture.

DOI:

Publication date: June 9, 2022

Issue: WAC 2022

Type: Article

Authors

Arnaud Lanoue, Kévin Billet, , Sébastien Salvador-Blanes, Thomas Dugé de Bernonville, Guillaume Delanoue, Florent Hinschberger, Audrey Oudin, Vincent Courdavault, Olivier Pichon, Sébastien Besseau, Samuel Leturcq, Nathalie Giglioli-Guivarc’h, Arnaud Lanoue

Presenting author

Arnaud Lanoue – EA 2106 Biomolécules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours

Institut Français de la Vigne et du Vin, Tours | GéoHydrosystèmes Continentaux (GéHCO), EA 6293, Université de Tours | Laboratoire CITERES, Equipe Laboratoire Archéologie et Territoires (LAT), UMR 7324 CNRS, Université de Tours| EA 2106 Biomolécules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours

Contact the author

Keywords

Terroir – metabolomics – grape polyphenols – Geographic Information System – correlation network

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.

What strategies do wine firms adopt to integrate CSR into their activities? An analysis among Italian wineries

Corporate Social Responsibility (CSR), as defined by the European Commission, is a strategic framework through which companies integrate social, environmental, and economic sustainability into their operations (European Commission, 2001).

137Cs analysis by gamma spectrometry and its potential for dating Portuguese old wines

Analytical methods for dating wines often rely on assessing anthropogenic and cosmogenic radionuclides, including 14C and 137Cs [1,2].

Dissecting the dual role of light regarding the plasticity of grape physiology and gene regulation through daylength simulation in a semi-arid region

Context and purpose of the study. Daylength is a key climatic factor within the terroir concept. However, the complex interplay of multiple variables in regions with varying daylengths makes it challenging to isolate and investigate this specific factor.