WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Mining terroir influence on bioactive polyphenols from grape stems: A correlation-network-driven approach to spatialize metabolomics data

Mining terroir influence on bioactive polyphenols from grape stems: A correlation-network-driven approach to spatialize metabolomics data

Abstract

In viticulture, the concept of terroir is often used to enlighten the environmental-based typicity of grapevines grown in a local area however its scientific basis remains under debate. Grape polyphenols as key player of the plant defense system enables adaptation to environmental changes and so far, form a unique metabolic component to investigate the terroir influence. Using correlation-based networks and spatial metabolomics we investigated how continuous changes of soil properties may impact the polyphenol composition within a single grape clone. In a vineyard parcel covering four different geological layers and planted with a unique clone of Cabernet Franc, the soil texture was analyzed at 30 georeferenced points with a spatial coverage sampling strategy. Grape stems were harvested at corresponding positions over 3 consecutive years followed by UPLC-DAD-MS-based metabolomic analysis targeted on 43 metabolites including flavonoids, phenolic acids, procyanidins and stilbenoids. Principal component analyses on intra-vintage data presented good reproducibility. A correlation-driven approach was used to select co-varying metabolites before using Geographic Information System (GIS). As results, flavonoids and stilbenoid DP4 were spatialized according to soil granulometry, with stilbenoid DP4 over-accumulating in loamy-silty soils and flavonoids in sandy soils. The present study highlights soil-based terroir influence on polyphenols in a continuous space. Spatial metabolomics driven by correlation-based networks represents a powerful approach to spatialize field-omics data and may serve as new field-phenotyping tool in precision agriculture.

DOI:

Publication date: June 9, 2022

Issue: WAC 2022

Type: Article

Authors

Arnaud Lanoue, Kévin Billet, , Sébastien Salvador-Blanes, Thomas Dugé de Bernonville, Guillaume Delanoue, Florent Hinschberger, Audrey Oudin, Vincent Courdavault, Olivier Pichon, Sébastien Besseau, Samuel Leturcq, Nathalie Giglioli-Guivarc’h, Arnaud Lanoue

Presenting author

Arnaud Lanoue – EA 2106 Biomolécules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours

Institut Français de la Vigne et du Vin, Tours | GéoHydrosystèmes Continentaux (GéHCO), EA 6293, Université de Tours | Laboratoire CITERES, Equipe Laboratoire Archéologie et Territoires (LAT), UMR 7324 CNRS, Université de Tours| EA 2106 Biomolécules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours

Contact the author

Keywords

Terroir – metabolomics – grape polyphenols – Geographic Information System – correlation network

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Aged red wines possess phenolic composition very different from young ones due to the transformations among native grape phenolics and the formation of new polymeric polyphenols during aging process.

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.