WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Abstract

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.

Several strategies can be used to improve the tannin composition in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost (Gil-Muñoz et al. 2021).

This study observes the impact on tannin composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate (MeJ) and methyl jasmonate n-doped calcium phosphate nanoparticles (nano-MeJ). The first objective of this study was to compare the effect of these treatments to determine if the tannin composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to way treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected. 

The experiments were conducted in a randomized block design during three consecutive seasons (2019-2021), in two foliar treatments were applied to the plants in spray form as a water suspension of MeJ (10 mM) and nano-MeJ (1 mM) at veraison. Control plants were sprayed with aqueous solution of Tween 80 alone. Tannins were analysed according to the methodology shown in Gil-Muñoz et al. (2018).

The results showed an increase in the values of total tannins in grapes for treatments except for nano-MeJ in the last year, although these were not statistically significant. Regarding wines, a greater increase was only obtained for treatments in 2019, in the other two seasons, this increase was only evident for MeJ. With respect to the epigallocatechin content was higher in nano-MeJ treated grapes in 2019 and 2020. Finally, this compounds was increased in wines from both treated grapes in 2019 and 2021, but only for in wines from MeJ treated grapes in 2020.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Rocio Gil Muñoz, Maria José, Gimenez Bañon, Diego Fernando, Paladines-Quezada, Juan Daniel, Moreno Olivares, Juan Antonio, Bleda-Sánchez, Jose Ignacio, Fernandez- Fernandez, Belen, Parra-Torrejón, Gloria Belén, Ramirez-Rodriguez, Jose Manuel, Delgado-López

Presenting author

Rocio Gil Muñoz – Instituto Murciano De Investigación Y Desarrollo Agrario Y Medioambiental

Instituto Murciano De Investigación Y Desarrollo Agrario Y Medioambiental | Universidad De Granada

Contact the author

Keywords

Elicitors-nanotechnology-tannins-grapes-wines

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of
the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Efecto de la cota sobre el potencial enológico de tres varietales tintos en el sur de Tenerife

La zona sur de la Isla de Tenerife elabora principalmente vinos blancos. Desde hace unos años se intenta elaborar mayor cantidad de vinos tintos, siendo los resultados obtenidos variables en función

Copper, iron and zinc in surface layer of Primošten vineyard soils

Long-term use of copper fungicides causes increased accumulation of total copper in the surface layer of vineyard soils. Many of authors has researched the anthropogenic influx of copper in such soils, which can result in environmental risks.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.