WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Abstract

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.

Several strategies can be used to improve the tannin composition in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost (Gil-Muñoz et al. 2021).

This study observes the impact on tannin composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate (MeJ) and methyl jasmonate n-doped calcium phosphate nanoparticles (nano-MeJ). The first objective of this study was to compare the effect of these treatments to determine if the tannin composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to way treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected. 

The experiments were conducted in a randomized block design during three consecutive seasons (2019-2021), in two foliar treatments were applied to the plants in spray form as a water suspension of MeJ (10 mM) and nano-MeJ (1 mM) at veraison. Control plants were sprayed with aqueous solution of Tween 80 alone. Tannins were analysed according to the methodology shown in Gil-Muñoz et al. (2018).

The results showed an increase in the values of total tannins in grapes for treatments except for nano-MeJ in the last year, although these were not statistically significant. Regarding wines, a greater increase was only obtained for treatments in 2019, in the other two seasons, this increase was only evident for MeJ. With respect to the epigallocatechin content was higher in nano-MeJ treated grapes in 2019 and 2020. Finally, this compounds was increased in wines from both treated grapes in 2019 and 2021, but only for in wines from MeJ treated grapes in 2020.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Rocio Gil Muñoz, Maria José, Gimenez Bañon, Diego Fernando, Paladines-Quezada, Juan Daniel, Moreno Olivares, Juan Antonio, Bleda-Sánchez, Jose Ignacio, Fernandez- Fernandez, Belen, Parra-Torrejón, Gloria Belén, Ramirez-Rodriguez, Jose Manuel, Delgado-López

Presenting author

Rocio Gil Muñoz – Instituto Murciano De Investigación Y Desarrollo Agrario Y Medioambiental

Instituto Murciano De Investigación Y Desarrollo Agrario Y Medioambiental | Universidad De Granada

Contact the author

Keywords

Elicitors-nanotechnology-tannins-grapes-wines

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.

Baccus: from framework to web platform for self-assessment of wine sustainability

Sustainability is becoming an increasingly present challenge, whether due to an increase in the level of perception and demand from consumers and stakeholders or the rise of events linked to climate change, which directly impacts agricultural-based sectors such as the vine and wine industry.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Soil humidity and early leaf water potential affected by water recharge before budbreak in cv. Tempranillo deficitary irrigated during the summer in the D. O. Ribera del Duero

The availability of water for irrigation is usually greater at the beginning of spring than in the following months, until the end of summer, in most regions of Spain.

Terroir or Tūrangawaewae? Expressing sense of place in an emerging New Zealand wine region

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...