WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

Abstract

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for safer, healthier and residue free foods and beverages. Recently, the use of ozone has been proposed as a possible alternative to traditional chemicals. However, studies on ozone application in the vineyard are very few especially considering its effect on grapes and wine quality and composition. In plant tissue ozone induce an oxidative stress which can triggers antioxidant response, and, therefore, it may enhance the production of antioxidant and stress-related secondary metabolites. As such, ozone can be considered an abiotic elicitor. In this study, canopies of Vitis vinifera (cv Sangiovese) plants have been sprayed with ozonated water throughout the vegetative growth and its effect on phenolic, antioxidant and aromatic compounds of grapes and wine have been assessed. In grapes, ozonated water induced a significant increase of antioxidant activity and total polyphenol content. Remarkably, changes in phenolic and aromatic profile in the resulting wine have also been observed. Specifically, Kampferol and Quercitin glucosides increased after ozone exposition as well as volatiles derived from the LOX-HPL pathway. These changes suggest that the oxidative stress induced leads to antioxidant metabolic response in grapes and therefore affects grapes and wine quality and composition.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Margherita Modesti, Stefano, Brizzolara, Cesare, Catelli, Fabio, Mencarelli, Andrea, Bellincontro, Pietro, Tonutti

Presenting author

Margherita Modesti  – Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy

Institute of Life Sciences, School of Advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 PISA, ITALY, P.C. di Pompeo Catelli S.R.L., Via Roma 81, Uggiate Trevano, 22029 Como, Italy, Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy, Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy, Institute of life science, School of advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 Pisa, ITALY,

Contact the author

Keywords

Ozone, polyphenols, C6 volatiles, antioxidant, oxidative stress

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Uvalino wine: chemical and sensory profile

The evaluation of different chemical compounds present in Uvalino wines was correlated with sensory analysis. The analysis showed a high content of polyphenolic compounds responsible for the organoleptic properties of wine, including color, astringency and bitterness.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

Evaluation of intravarietal variability and selection for tolerance to downy mildew: The case of Antão Vaz variety in Portugal 

Antão Vaz is a Portuguese white grapevine variety grown mainly in the wine-growing regions of Southern Portugal, particularly in the Alentejo, Lisbon and Setúbal peninsula regions. It is a very vigorous and productive variety, giving the wines a strong identity. It needs heat and sunlight and prefers deep and dry soils, which makes it tolerant to scald caused by the high summer temperatures of Southern Portugal. However, this variety is very susceptible to downy mildew, caused by plasmopara viticola, a very destructive disease in years with rainy springs.

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].