WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

Abstract

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for safer, healthier and residue free foods and beverages. Recently, the use of ozone has been proposed as a possible alternative to traditional chemicals. However, studies on ozone application in the vineyard are very few especially considering its effect on grapes and wine quality and composition. In plant tissue ozone induce an oxidative stress which can triggers antioxidant response, and, therefore, it may enhance the production of antioxidant and stress-related secondary metabolites. As such, ozone can be considered an abiotic elicitor. In this study, canopies of Vitis vinifera (cv Sangiovese) plants have been sprayed with ozonated water throughout the vegetative growth and its effect on phenolic, antioxidant and aromatic compounds of grapes and wine have been assessed. In grapes, ozonated water induced a significant increase of antioxidant activity and total polyphenol content. Remarkably, changes in phenolic and aromatic profile in the resulting wine have also been observed. Specifically, Kampferol and Quercitin glucosides increased after ozone exposition as well as volatiles derived from the LOX-HPL pathway. These changes suggest that the oxidative stress induced leads to antioxidant metabolic response in grapes and therefore affects grapes and wine quality and composition.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Margherita Modesti, Stefano, Brizzolara, Cesare, Catelli, Fabio, Mencarelli, Andrea, Bellincontro, Pietro, Tonutti

Presenting author

Margherita Modesti  – Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy

Institute of Life Sciences, School of Advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 PISA, ITALY, P.C. di Pompeo Catelli S.R.L., Via Roma 81, Uggiate Trevano, 22029 Como, Italy, Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy, Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy, Institute of life science, School of advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 Pisa, ITALY,

Contact the author

Keywords

Ozone, polyphenols, C6 volatiles, antioxidant, oxidative stress

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Revisión de estudios sobre suelos vitícolas de las tierras del Jerez

Dada la importancia de los suelos y de los substratos geológicos en la zonificación vitivinícola, los autores realizan una revisión de estudios sobre las formaciones más importantes en la D.O. Jerez-Xérès-Sherry y Manzanilla-Sanlúcar de Barrameda.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Ribeira Sacra is a Spanish Denominación de Origen (D.O.) for wines, located in Galicia, NW Spain.

Impact of yeast derivatives to increase the phenolic maturity and aroma intensity of wine

Using viticultural and enological techniques to increase aromatics in white wine is a prized yet challenging technique for commercial wine producers. Equally difficult are challenges encountered in hastening phenolic maturity and thereby increasing color intensity in red wines. The ability to alter organoleptic and visual properties of wines plays a decisive role in vintages in which grapes are not able to reach full maturity, which is seen increasingly more often as a result of climate change. A new, yeast-based product on the viticultural market may give the opportunity to increase sensory properties of finished wines. Manufacturer packaging claims these yeast derivatives intensify wine aromas of white grape varieties, as well as improve phenolic ripeness of red varieties, but the effects of this application have been little researched until now. The current study applied the yeast derivative, according to the manufacture’s instructions, to the leaves of both neutral and aromatic white wine varieties, as well as on structured red wine varieties. Chemical parameters and volatile aromatics were analyzed in grape musts and finished wines, and all wines were subjected to sensory analysis by a tasting panel. Collective results of all analyses showed that the application of the yeast derivative in the vineyard showed no effect across all varieties examined, and did not intensify white wine aromatics, nor improve phenolic ripeness and color intensity in red wine.