WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

Abstract

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for safer, healthier and residue free foods and beverages. Recently, the use of ozone has been proposed as a possible alternative to traditional chemicals. However, studies on ozone application in the vineyard are very few especially considering its effect on grapes and wine quality and composition. In plant tissue ozone induce an oxidative stress which can triggers antioxidant response, and, therefore, it may enhance the production of antioxidant and stress-related secondary metabolites. As such, ozone can be considered an abiotic elicitor. In this study, canopies of Vitis vinifera (cv Sangiovese) plants have been sprayed with ozonated water throughout the vegetative growth and its effect on phenolic, antioxidant and aromatic compounds of grapes and wine have been assessed. In grapes, ozonated water induced a significant increase of antioxidant activity and total polyphenol content. Remarkably, changes in phenolic and aromatic profile in the resulting wine have also been observed. Specifically, Kampferol and Quercitin glucosides increased after ozone exposition as well as volatiles derived from the LOX-HPL pathway. These changes suggest that the oxidative stress induced leads to antioxidant metabolic response in grapes and therefore affects grapes and wine quality and composition.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Margherita Modesti, Stefano, Brizzolara, Cesare, Catelli, Fabio, Mencarelli, Andrea, Bellincontro, Pietro, Tonutti

Presenting author

Margherita Modesti  – Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy

Institute of Life Sciences, School of Advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 PISA, ITALY, P.C. di Pompeo Catelli S.R.L., Via Roma 81, Uggiate Trevano, 22029 Como, Italy, Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy, Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy, Institute of life science, School of advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 Pisa, ITALY,

Contact the author

Keywords

Ozone, polyphenols, C6 volatiles, antioxidant, oxidative stress

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Under-row low competitive herbaceous cover: A sustainable alternative to herbicide in vineyards

Weeds are undesirable plants in agroecosystems as they compete with the crop for essential resources such as light, water and nutrients, compromising the final yield and its quality.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Increasing soil organic carbon (SOC) in vineyards enhances soil health with associated benefits for climate change resilience and mitigation.

Effects of soil and climate on wine style in Stellenbosch: Sauvignon blanc

Une étude a été menée pendant neuf ans sur deux vignes non-irriguées de Sauvignon blanc commercialisés, plantées à différentes localités (A et B) dans le district de Stellenbosch. Deux parcelles expérimentales, situées sur deux formations géologiques différentes, ont été identifiées au sein de chaque vignoble. A chaque localité une des

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

The influence of site aspect and pruning types on Pinot Noir phenology and shoot growth

Aim: Managing the influence that terroir in vineyards has on vine development depends on improving our understanding the effect of the interaction of within-site variability, within-vine variability, and management practices (such as pruning types) on phenology and vine development. This study evaluates the consequence of site aspect