WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

Abstract

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for safer, healthier and residue free foods and beverages. Recently, the use of ozone has been proposed as a possible alternative to traditional chemicals. However, studies on ozone application in the vineyard are very few especially considering its effect on grapes and wine quality and composition. In plant tissue ozone induce an oxidative stress which can triggers antioxidant response, and, therefore, it may enhance the production of antioxidant and stress-related secondary metabolites. As such, ozone can be considered an abiotic elicitor. In this study, canopies of Vitis vinifera (cv Sangiovese) plants have been sprayed with ozonated water throughout the vegetative growth and its effect on phenolic, antioxidant and aromatic compounds of grapes and wine have been assessed. In grapes, ozonated water induced a significant increase of antioxidant activity and total polyphenol content. Remarkably, changes in phenolic and aromatic profile in the resulting wine have also been observed. Specifically, Kampferol and Quercitin glucosides increased after ozone exposition as well as volatiles derived from the LOX-HPL pathway. These changes suggest that the oxidative stress induced leads to antioxidant metabolic response in grapes and therefore affects grapes and wine quality and composition.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Margherita Modesti, Stefano, Brizzolara, Cesare, Catelli, Fabio, Mencarelli, Andrea, Bellincontro, Pietro, Tonutti

Presenting author

Margherita Modesti  – Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy

Institute of Life Sciences, School of Advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 PISA, ITALY, P.C. di Pompeo Catelli S.R.L., Via Roma 81, Uggiate Trevano, 22029 Como, Italy, Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy, Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy, Institute of life science, School of advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 Pisa, ITALY,

Contact the author

Keywords

Ozone, polyphenols, C6 volatiles, antioxidant, oxidative stress

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Why aren’t farmers using precision viticulture frequently? A case study

n the last years, viticulture precision tools have been made available for farmers for different crops. The feeling that these tools are mandatory on an agriculture of the future have been disseminated by commercial entities but also from policy makers.

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.

Market entry strategies in the U.S. alcohol distribution: The case of French wine exporters

This study examines the different strategies adopted by wine exporters located in France for penetrating international alcohol distribution networks in the U.S. market (and to a lesser extent the Canadian market). Grounded in the Business-to-Business (B2B) marketing literature (Ellegaard and Medlin, 2018), this study adopts a framework integrating a ‘Stakeholder’ approach for understanding the logics behind exporters’ strategies to penetrate the alcohol distribution networks (wholesalers, importers, alcohol monopolies).

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.

Impact of press fractioning on Pinot noir and Pinot meunier grape juice and wine compositions and colour

The separation of different grape juice press fractions is an important step in the production of sparkling base wines. A complete press cycle for this style of wine is a series of pressure increases (squeezes) resulting in variations in juice composition during the press cycle. After alcoholic fermentation, wines obtained from grape juices also exhibit strong differences for numerous characteristics. Nevertheless, there is no statistical study of the impact of the press cycle on grape juices and wine colour/composition. So, the aim of this study (vintage 2018) was to investigate the changes in composition and colour parameters of Pinot noir and Pinot meunier grapes juices, as well as their corresponding wines, during the pressing cycle.