WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

Abstract

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for safer, healthier and residue free foods and beverages. Recently, the use of ozone has been proposed as a possible alternative to traditional chemicals. However, studies on ozone application in the vineyard are very few especially considering its effect on grapes and wine quality and composition. In plant tissue ozone induce an oxidative stress which can triggers antioxidant response, and, therefore, it may enhance the production of antioxidant and stress-related secondary metabolites. As such, ozone can be considered an abiotic elicitor. In this study, canopies of Vitis vinifera (cv Sangiovese) plants have been sprayed with ozonated water throughout the vegetative growth and its effect on phenolic, antioxidant and aromatic compounds of grapes and wine have been assessed. In grapes, ozonated water induced a significant increase of antioxidant activity and total polyphenol content. Remarkably, changes in phenolic and aromatic profile in the resulting wine have also been observed. Specifically, Kampferol and Quercitin glucosides increased after ozone exposition as well as volatiles derived from the LOX-HPL pathway. These changes suggest that the oxidative stress induced leads to antioxidant metabolic response in grapes and therefore affects grapes and wine quality and composition.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Margherita Modesti, Stefano, Brizzolara, Cesare, Catelli, Fabio, Mencarelli, Andrea, Bellincontro, Pietro, Tonutti

Presenting author

Margherita Modesti  – Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy

Institute of Life Sciences, School of Advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 PISA, ITALY, P.C. di Pompeo Catelli S.R.L., Via Roma 81, Uggiate Trevano, 22029 Como, Italy, Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy, Department for innovation in biological, agro-food and forest system (DIBAF), Tuscia University – Via San Camillo de Lellis snc, 01100 Viterbo, Italy, Institute of life science, School of advanced studies Sant’Anna, Piazza Martiri della Libertà, 33 56127 Pisa, ITALY,

Contact the author

Keywords

Ozone, polyphenols, C6 volatiles, antioxidant, oxidative stress

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Comparison between the volatile chemical profile of two different blends for PDO “Valpolicella Superiore”

Valpolicella is a famous wine producing region located in the north of Verona close to Garda lake and owes its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. Nowadays the production of another PDO, Valpolicella Superiore is gaining more attention by the consumers, increasing the interest of the wineries to improve the quality of this wines

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.

Observation and modeling of climate at fine scales in wine-producing areas

Global change in climate affect regional climates and hold implications for viticulture worldwide. Despite numerous studies on the impact of projected global warming on different regions

Color stabilization properties of oenological tannins

The use of oenological tannins is authorized for many years by the OIV and advised for color stabilization. For this reason, winemakers look for a better understanding of tannins/anthocyanins interactions to produce deeply colored wines with great color stability during aging.